Skip to main content

Non-deterministic Calibration of Crystal Plasticity Model Parameters

  • Chapter
  • First Online:
Integrated Computational Materials Engineering (ICME)

Abstract

Crystal plasticity constitutive models are frequently used with finite elements for modeling metallic grain-scale phenomena. The accuracy of these models is directly a function of the calibrated parameters, which fully define a crystal plasticity model. A number of techniques exist for the calibration of these parameters. In the current study, a comparison of results using deterministic and non-deterministic calibration methods is made. Additionally, the effect of the type of measured data on calibrated material parameters, global (homogenized) or local, is also presented. Included in the study is a new approach to parameter calibration based on combined digital image correlation and high angular resolution electron backscatter diffraction. Utilizing data from these experimental techniques allows for local evaluation of both strain and relative stress: essentially giving stress-strain curves from numerous point locations in a single coupon. The overall result is that calibration based on sub-grain-scale measurements is preferable when sub-grain-scale phenomena are of primary interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Diagnosing chain convergence can be challenging, and readers are referred to [6, 13] for more information.

References

  1. S. Avril, M. Bonnet, A.S. Bretelle, M. Grédiac, F. Hild, P. Ienny, F. Latourte, D. Lemosse, S. Pagano, E. Pagnacco, F. Pierron, Overview of identification methods of mechanical parameters based on full-field measurements. Exp. Mech. 48(4), 381 (2008)

    Google Scholar 

  2. M. Bertin, C. Du, J.P. Hoefnagels, F. Hild, Crystal plasticity parameter identification with 3D measurements and integrated digital image correlation. Acta Mater. 116, 321–331 (2016)

    Article  CAS  Google Scholar 

  3. M. Bonnet, A. Constantinescu, Inverse problems in elasticity. Inverse Prob. 21(2), R1 (2005). http://stacks.iop.org/0266-5611/21/i=2/a=R01

  4. J.E. Bozek, J.D. Hochhalter, M.G. Veilleux, M. Liu, G. Heber, S.D. Sintay, A.D. Rollett, D.J. Littlewood, A.M. Maniatty, H. Weiland, R.J. Christ, J. Payne, G. Welsh, D.G. Harlow, P.A. Wawrzynek, A.R. Ingraffea, A geometric approach to modeling microstructurally small fatigue crack formation: I. Probabilistic simulation of constituent particle cracking in AA 7075-T651. Model. Simul. Mater. Sci. Eng. 16(6), 065007 (2008)

    Google Scholar 

  5. T. Britton, C. Maurice, R. Fortunier, J. Driver, A. Day, G. Meaden, D. Dingley, K. Mingard, A. Wilkinson, Factors affecting the accuracy of high resolution electron backscatter diffraction when using simulated patterns. Ultramicroscopy 110, 1443–1453 (2010)

    Article  CAS  Google Scholar 

  6. S.P. Brooks, G.O. Roberts, Convergence assessment techniques for markov chain Monte Carlo. Stat. Comput. 8(4), 319–335 (1998)

    Article  Google Scholar 

  7. J. Brynjarsdóttir, A. O’Hagan, Learning about physical parameters: the importance of model discrepancy. Inverse Prob. 30(11), 114007 (2014)

    Google Scholar 

  8. G.M. Castelluccio, D.L. Mcdowell, A mesoscale modeling of microstructurally small fatigue cracks in metallic polycrystals. Mater. Sci. Eng. A 598, 34–55 (2014)

    Article  CAS  Google Scholar 

  9. Z. Chen, W. Lenthe, J.C. Stinville, M. Echlin, T.M. Pollock, S. Daly, High-resolution deformation mapping across large fields of view using scanning electron microscopy and digital image correlation. Exp. Mech. 58(9), 1407–1421 (2018)

    Article  Google Scholar 

  10. Y. Dong, B. Pan, A review of speckle pattern fabrication and assessment for digital image correlation. Exp. Mech. 57(8), 1161–1181 (2017)

    Article  Google Scholar 

  11. F. Gao, L. Han, Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput. Optim. Appl. 51(1), 259–277 (2012)

    Article  Google Scholar 

  12. C. Geuzaine, J.F. Remacle, GMSH: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

    Article  Google Scholar 

  13. J. Geweke et al., Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, vol. 196. Federal Reserve Bank of Minneapolis, Research Department Minneapolis (1991)

    Google Scholar 

  14. M. Groeber, M. Jackson, DREAM.3D: a digital representation environment for the analysis of microstructure in 3D. Integr. Mater. Manuf. Innov. 3(1), 5 (2014)

    Google Scholar 

  15. A. Guery, F. Hild, F. Latourte, S. Roux, Identification of crystal plasticity parameters using DIC measurements and weighted FEMU. Mech. Mater. 100, 55–71 (2016)

    Article  Google Scholar 

  16. H. Haario, M. Laine, A. Mira, E. Saksman, Dram: efficient adaptive MCMC. Stat. Comput. 16(4), 339–354 (2006)

    Article  Google Scholar 

  17. T. Hoc, J. Crèpin, L. Gèplèrt, A. Zaoui, A nonprocedure for identifying the plastic behavior of single crystals from the local response of polycrystals. Acta Mater. 51(18), 5477–5488 (2003)

    Article  CAS  Google Scholar 

  18. B.E. Jackson, J.J. Christensen, S. Singh, M. De Graef, D.T. Fullwood, E.R. Homer, R.H. Wagoner, Performance of dynamically simulated reference patterns for cross-correlation electron backscatter diffraction. Microsc. Microanal. 22(4), 789–802 (2016)

    Article  CAS  Google Scholar 

  19. H. Jin, W. Lu, J. Korellis, Micro-scale deformation measurement using the digital image correlation technique and scanning electron microscope imaging. J. Strain Anal. Eng. Des. 43(8), 719–728 (2008)

    Article  Google Scholar 

  20. J. Kacher, C. Landon, B.L. Adams, D. Fullwood, Bragg‘s law diffraction simulations for electron backscatter diffraction analysis. Ultramicroscopy 109(9), 1148–1156 (2009)

    Article  CAS  Google Scholar 

  21. J. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems (Springer Science & Business Media, New York, 2006)

    Google Scholar 

  22. M.C. Kennedy, A. O’Hagan, Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 63(3), 425–464 (2001)

    Google Scholar 

  23. R. Lebensohn, C. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall. et Mater. 41(9), 2611–2624 (1993)

    Article  CAS  Google Scholar 

  24. H. Leclerc, J.N. Périé, S. Roux, F. Hild, Integrated digital image correlation for the identification of mechanical properties, in Proceedings of the 4th International Conference on Computer Vision/Computer Graphics Collaboration Techniques (Springer, 2009), pp. 161–171

    Google Scholar 

  25. H. Lim, J. Carroll, C. Battaile, T. Buchheit, B. Boyce, C. Weinberger, Grain-scale experimental validation of crystal plasticity finite element simulations of tantalum oligocrystals. Int. J. Plast. 60, 1–18 (2014)

    Article  CAS  Google Scholar 

  26. F. Mathieu, H. Leclerc, F. Hild, S. Roux, Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC. Exp. Mech. 55(1), 105–119 (2015)

    Article  Google Scholar 

  27. J. Nocedal, S. Wright, Numerical Optimization, Springer Series in Operations Research and Financial Engineering, 2nd edn. (Springer-Verlag, New York, 2006). http://dx.doi.org/10.1007/978-0-387-40065-5

    Google Scholar 

  28. B. Pan, K. Qian, H. Xie, A. Asundi, Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas. Sci. Technol. 20(6), 062001 (2009)

    Google Scholar 

  29. A. Patil, D. Huard, C.J. Fonnesbeck, PyMC: bayesian stochastic modelling in Python. J. Stat. Softw. 35(4), 1–81 (2010)

    Article  Google Scholar 

  30. P.L. Phillips, A. Brockman, R. John, Modelling strategies for property identification based on full-field surface displacement data. Strain 48, 143–152 (2011)

    Article  Google Scholar 

  31. R.S. Piascik, N.F. Knight Jr., Re-tooling the agency’s engineering predictive practices for durability and damage tolerance. NASA/TM-2017–219621, 60 (2017)

    Google Scholar 

  32. O. Rokoš, J. Hoefnagels, R. Peerlings, M. Geers, On micromechanical parameter identification with integrated dic and the role of accuracy in kinematic boundary conditions. Int. J. Solids Struct. 146, 241–259 (2018)

    Article  Google Scholar 

  33. F. Roters, P. Eisenlohr, L. Hantcherli, D. Tjahjanto, T. Bieler, D. Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58(4), 1152–1211 (2010)

    Article  CAS  Google Scholar 

  34. T. Ruggles, D. Fullwood, J. Kysar, Resolving geometrically necessary dislocation density onto individual dislocation types using EBSD-based continuum dislocation microscopy. Int. J. Plast. 76, 231–243 (2016)

    Article  CAS  Google Scholar 

  35. T.J. Ruggles, G.F. Bomarito, A.H. Cannon, J.D. Hochhalter, Selectively electron-transparent microstamping toward concurrent digital image correlation and high-angular resolution electron backscatter diffraction (EBSD) analysis. Microsc. Microanal. 23(6), 1091–1095 (2017)

    Article  CAS  Google Scholar 

  36. R. Russell, D. Dawicke, J. Hochhalter, Composite overwrapped pressure vessel (COPV) life test, in European Conference on Spacecraft Structures, Materials and Environmental Testing (ECSSMET). Electrostatics Society of America (ESA) (2018), pp. 1–6

    Google Scholar 

  37. M. Sangid, S. Yeratapally, A. Rovinelli, Validation of microstructure-based materials modeling, in 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics (2014). http://arc.aiaa.org/doi/10.2514/6.2014-0462

  38. R.C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications (SIAM, Philadelphia, 2013)

    Google Scholar 

  39. M.A. Sutton, J.H. Yan, S. Avril, F. Pierron, S.M. Adeeb, Identification of heterogeneous constitutive parameters in a welded specimen: uniform stress and virtual fields methods for material property estimation. Exp. Mech. 48(4), 451–464 (2008)

    Article  Google Scholar 

  40. M.A. Sutton, J.J. Orteu, H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications (Springer Science & Business Media, New York, 2009)

    Google Scholar 

  41. G. Taylor, Plastic strain in metals. J. Inst. Met. 62, 307–324 (1938)

    Google Scholar 

  42. T.J. Turner, P.A. Shade, J.C. Schuren, M.A. Groeber, The influence of microstructure on surface strain distributions in a nickel micro-tension specimen. Model. Simul. Mater. Sci. Eng. 21, 015002 (2013)

    Article  CAS  Google Scholar 

  43. J.E. Warner, G.F. Bomarito, J.D. Hochhalter, Scalable Implementation of Finite Elements by NASA _ Implicit (ScIFEi), NASA/TM – 2016-219180. Technical Report April, NASA, Hampton (2016)

    Google Scholar 

  44. A.J. Wilkinson, G. Meaden, D.J. Dingley, High resolution mapping of strains and rotations using electron back scatter diffraction. Mater. Sci. Technol. 22(11), 1–11 (2006)

    Article  CAS  Google Scholar 

  45. S.R. Yeratapally, M.G. Glavicic, M. Hardy, M.D. Sangid, Microstructure based fatigue life prediction framework for polycrystalline nickel-base superalloys with emphasis on the role played by twin boundaries in crack initiation. Acta Mater. 107, 152–167 (2016)

    Article  CAS  Google Scholar 

  46. X. Zhang, Y. Wang, J. Yang, Z. Qiao, C. Ren, C. Chen, Deformation analysis of ferrite/pearlite banded structure under uniaxial tension using digital image correlation. Opt. Lasers Eng. 85, 24–28 (2016)

    Article  Google Scholar 

  47. Z. Zhao, M. Ramesh, D. Raabe, A.M. Cuitino, R. Radovitzky, Investigation of three-dimensional aspects of grain-scale plastic surface deformation of an aluminum oligocrystal. Int. J. Plast. 24, 2278–2297 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Hochhalter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hochhalter, J. et al. (2020). Non-deterministic Calibration of Crystal Plasticity Model Parameters. In: Ghosh, S., Woodward, C., Przybyla, C. (eds) Integrated Computational Materials Engineering (ICME). Springer, Cham. https://doi.org/10.1007/978-3-030-40562-5_6

Download citation

Publish with us

Policies and ethics