Skip to main content

Challenges in Understanding the Dynamic Behavior of Heterogeneous Materials

  • Chapter
  • First Online:
Integrated Computational Materials Engineering (ICME)

Abstract

The response of heterogeneous materials subjected to extreme dynamic loads is complicated by meso-scale phenomena which manifests a bulk response to the percolating dynamic event. The microstructural arrangement of phases, the extrinsic properties of microconstituents, and the property contrasts and various length scales affect the ability of stress waves to propagate through a material and affect the material’s inherent dissipative behavior. Measuring the effects of these meso-level phenomena is very challenging when considering extremely fast events occurring at multiple spatial and temporal scales. The advent of high performance computing and massively parallel computations allows for highly resolved phenomena to be modeled via hydrocode simulation with relative ease. Combining microstructural and mechanistic understanding of the relevant physics of the dynamic processes can lead to a tractable solution to the problem of shock compression response in heterogeneous materials. This chapter discusses the challenges in understanding the dynamic behavior of heterogeneous materials in particular, which are of interest due to their fascinating and useful properties and in part because of the richness and diversity of phenomena activated under extreme dynamic conditions. A brief literature survey on the shock compression of heterogeneous materials is provided, with attention given to granular media, reactive powder mixtures, energetic and composite materials, and multiphase materials. Case studies from the authors’ work on reactive materials are presented which employ Integrated Computational Materials Science and Engineering (ICMSE) tools to understand the connection between observed experimental behavior and meso-level phenomena. A discussion is presented on possible ways of exploring topology, property contrasts, and microstructural morphology to link dynamic response to micro- and meso-scale behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ωij must be symmetric, i.e., Ωij = Ωji to ensure conservation of momentum. Also, the authors restricted momentum transfer to a ball of radius r c, Ωij = 0 if \(\left | {\mathbf {r}}_i - {\mathbf {r}}_j \right | > r_c\).

  2. 2.

    More details on the difference between material and spatial coordinates can be found in Malvern’s excellent text [50] on continuum mechanics.

  3. 3.

    This final density was selected because it was the maximum density achievable the cold isostatic pressing setup used in our lab for the pure Ti+B mixtures.

References

  1. E. Abu-Nada, Natural convection heat transfer simulation using energy conservative dissipative particle dynamics. Phys. Rev. E 81(5) (2010). https://doi.org/10.1103/physreve.81.056704

  2. E. Abu-Nada, Application of dissipative particle dynamics to natural convection in differentially heated enclosures. Mol. Simul. 37(2), 135–152 (2011). https://doi.org/10.1080/08927022.2010.533272

    Article  CAS  Google Scholar 

  3. E. Antillon, K. Banlusan, A. Strachan, Coarse grain model for coupled thermo-mechano-chemical processes and its application to pressure-induced endothermic chemical reactions. Model. Simul. Mater. Sci. Eng. 22(2), 025027 (2014). https://doi.org/10.1088/0965-0393/22/2/025027

  4. E. Antillon, A. Strachan, Mesoscale simulations of shockwave energy dissipation via chemical reactions. J. Chem. Phys. 142(8), 084108 (2015). https://doi.org/10.1063/1.4908309

  5. R.A. Austin, D.L. McDowell, A dislocation-based constitutive model for viscoplastic deformation of FCC metals at very high strain rates. Int. J. Plast. 27(1), 1–24 (2011). https://doi.org/10.1016/j.ijplas.2010.03.002

    Article  CAS  Google Scholar 

  6. R.A. Austin, D.L. McDowell, Parameterization of a rate-dependent model of shock-induced plasticity for copper, nickel, and aluminum. Int. J. Plast. 32–33, 134–154 (2012). https://doi.org/10.1016/j.ijplas.2011.11.002

    Article  CAS  Google Scholar 

  7. R.A. Austin, D.L. McDowell, D.J. Benson, Numerical simulation of shock wave propagation in spatially-resolved particle systems. Model. Simul. Mater. Sci. Eng. 14(4), 537–561 (2006). https://doi.org/10.1088/0965-0393/14/4/001

    Article  Google Scholar 

  8. R.A. Austin, D.L. McDowell, D.J. Benson, Mesoscale simulation of shock wave propagation in discrete Ni/Al powder mixtures. J. Appl. Phys. 111, 123511 (2012). https://doi.org/10.1063/1.4729304

    Article  CAS  Google Scholar 

  9. J.B. Avalos, A.D. Mackie, Dissipative particle dynamics with energy conservation. Europhys. Lett. (EPL) 40(2), 141–146 (1997). https://doi.org/10.1209/epl/i1997-00436-6

  10. L.S. Bennett, Y. Horie, Shock-induced inorganic reactions and condensed phase detonations. Shock Waves 4, 127 (1994)

    Article  Google Scholar 

  11. L.S. Bennett, F.Y. Sorrell, I.K. Simonsen, Y. Horie, K. Iyer, Ultrafast chemical reactions between nickel and aluminum powders during shock loading. Appl. Phys. Lett. 61(5), 520–521 (1992)

    Article  CAS  Google Scholar 

  12. D. Benson, I. Do, M. Meyers, Computational modeling of the shock compression of powders, in Shock Compression of Condensed Matter – 2001, ed. by M. Furnish, N. Thadhani, Y. Horie (American Institute of Physics, Melville, 2002), pp. 1087–1092

    Google Scholar 

  13. D. Benson, V. Nesterenko, F. Jonsdottir, Micromechanics of shock deformation of granular materials, in Shock Compression of Condensed Matter 1995, ed. by S. Schmidt, W. Tao (American Institute of Physics, Woodbury/New York, 1996), pp. 603–606

    Google Scholar 

  14. J.K. Brennan, M. Lísal, J.D. Moore, S. Izvekov, I.V. Schweigert, J.P. Larentzos, Coarse-grain model simulations of nonequilibrium dynamics in heterogeneous materials. J. Phys. Chem. Lett. 5(12), 2144–2149 (2014). https://doi.org/10.1021/jz500756s

    Article  CAS  Google Scholar 

  15. H.J. Choi, R. Austin, J.K. Allen, D.L. McDowell, F. Mistree, D.J. Benson, An approach for robust design of reactive power metal mixtures based on non-deterministic micro-scale shock simulation. J. Comput.-Aided Mater. Des. 12(1), 57–85 (2005). https://doi.org/10.1007/s10820-005-1056-1

    Article  CAS  Google Scholar 

  16. G.E. Duvall, R.A. Graham, Phase transitions under shock-wave loading. Rev. Mod. Phys. 49(3), 523 (1977)

    Google Scholar 

  17. D.E. Eakins, N.N. Thadhani, Shock compression of reactive powder mixtures. Int. Mater. Rev. 54(4), 181 (2009)

    Google Scholar 

  18. P. Español, Hydrodynamics from dissipative particle dynamics. Phys. Rev. E 52(2), 1734–1742 (1995). https://doi.org/10.1103/physreve.52.1734

    Article  Google Scholar 

  19. P. Español, Dissipative particle dynamics with energy conservation. Europhys. Lett. (EPL) 40(6), 631–636 (1997). https://doi.org/10.1209/epl/i1997-00515-8

  20. P. Español, P. Warren, Statistical mechanics of dissipative particle dynamics. Europhys. Lett. (EPL) 30(4), 191–196 (1995). https://doi.org/10.1209/0295-5075/30/4/001

  21. J. Field, S. Walley, W. Proud, H. Goldrein, C. Siviour, Review of experimental techniques for high rate deformation and shock studies. Int. J. Impact Eng. 30(7), 725–775 (2004). https://doi.org/10.1016/j.ijimpeng.2004.03.005

    Article  Google Scholar 

  22. J.W. Forbes, Shock Wave Compression of Condensed Matter – A Primer (Springer, 2012)

    Book  Google Scholar 

  23. U. Frisch, B. Hasslacher, Y. Pomeau, Lattice-gas automata for the navier-stokes equation. Phys. Rev. Lett. 56(14), 1505–1508 (1986). https://doi.org/10.1103/physrevlett.56.1505

    Article  CAS  Google Scholar 

  24. D.T. Fullwood, B.L. Adams, S.R. Kalidindi, A strong contrast homogenization formulation for multi-phase anisotropic materials. J. Mech. Phys. Solids 56(6), 2287–2297 (2008). https://doi.org/10.1016/j.jmps.2008.01.003

    Article  CAS  Google Scholar 

  25. M. Gonzales, The mechanochemistry in heterogeneous reactive powder mixtures under high-strain-rate loading and shock compression. Ph.D. thesis (2015)

    Google Scholar 

  26. M. Gonzales, A. Gurumurthy, G.B. Kennedy, A.M. Gokhale, N.N. Thadhani, Microstructure-based simulations of the high-strain-rate response of heterogeneous Ti/Al/B reactive powder mixtures, in Proceedings of the Fall 2012 Meeting of the Materials Research Society (MRS, Boston, 2012)

    Google Scholar 

  27. M. Gonzales, A. Gurumurthy, G.B. Kennedy, A.M. Gokhale, N.N. Thadhani, Shock compression response of Ti+B reactive powder mixtures. J. Phys. Conf. Ser. 500, 052013 (2014)

    Article  CAS  Google Scholar 

  28. M. Gonzales, A. Gurumurthy, G.B. Kennedy, A.M. Gokhale, N.N. Thadhani, Heterogeneity and microstructural topology effects on the shock response of Ti+B+Al reactive powder mixtures. In preparation (2015)

    Google Scholar 

  29. M. Gonzales, A. Gurumurthy, G.B. Kennedy, A.M. Gokhale, N.N. Thadhani, Meso-scale heterogeneity effects on the bulk shock response of Ti+Al+B reactive powder mixtures, in AIP Conference Proceedings, vol. 1793 (2017), p. 080007

    Google Scholar 

  30. R.A. Graham, Sandia Laboratories Report SAND88-1055. Technical report, Sandia National Laboratory (1988)

    Google Scholar 

  31. R.A. Graham, Issues in shock-induced solid state chemistry, in 3rd International Symposium High Dynamic Pressures, Paris, ed. by R. Cheret, 1989, pp. 175–180

    Google Scholar 

  32. R.A. Graham, Solids Under High-Pressure Shock Compression (Springer, 1993)

    Book  Google Scholar 

  33. R.A. Graham, M.U. Anderson, Y. Horie, S.K. You, G.T. Holman, Pressure measurements in chemically reacting powder mixtures with the Bauer piezoelectric polymer gauge. Shock Waves 3, 79–82 (1993)

    Article  Google Scholar 

  34. R.D. Groot, P.B. Warren, Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107(11), 4423–4435 (1997). https://doi.org/10.1063/1.474784

    Article  CAS  Google Scholar 

  35. A. Gurumurthy, Simulation Methodologies for Multiphase Three-Dimensional Microstructures. Ph.D. thesis, Georgia Institute of Technology (2014)

    Google Scholar 

  36. A. Gurumurthy, A.M. Gokhale, A. Godha, M. Gonzales, Montage serial sectioning: some finer aspects of practice. Metallogr. Microstruct. Anal. 2, 364–371 (2013)

    Article  Google Scholar 

  37. A. Gurumurthy, M. Gonzales, A.M. Gokhale, N.N. Thadhani, Bulk orientational anisotropy without spatial anisotropy due to powder compaction in Al-Ti-B compacts. Scr. Mater. 86, 28–31 (2014)

    Article  CAS  Google Scholar 

  38. J.M. Haile, Molecular Dynamics Simulation – Elementary Methods, professional paperback ed. edn. (John-Wiley, 1997)

    Google Scholar 

  39. P.J. Hoogerbrugge, J.M.V.A. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. (EPL) 19(3), 155–160 (1992). https://doi.org/10.1209/0295-5075/19/3/001

  40. Y. Horie, R. Graham, I. Simonsen, Synthesis of nickel aluminides under high-pressure shock loading. Mater. Lett. 3(9–10), 354–359 (1985). https://doi.org/10.1016/0167-577X(85)90075-8. http://www.sciencedirect.com/science/article/pii/0167577X85900758

  41. Y. Horie, R.A. Graham, I.K. Simonsen, in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, ed. by L.E. Murr, K.P. Staudhammer, M.A. Meyers (Mercel Dekker, Inc., 1986), p. 1023

    Google Scholar 

  42. Y. Horie, A.B. Sawaoka, Shock Compression Chemistry of Materials (KTK, Tokyo, 1993)

    Google Scholar 

  43. H. Jarmakani, E. Bringa, P. Erhart, B. Remington, Y. Wang, N. Vo, M. Meyers, Molecular dynamics simulations of shock compression of nickel: from monocrystals to nanocrystals. Acta Mater. 56(19), 5584–5604 (2008). https://doi.org/10.1016/j.actamat.2008.07.052

    Article  CAS  Google Scholar 

  44. Z. Kang, A.A. Banishev, G. Lee, D.A. Scripka, J. Breidenich, P. Xiao, J. Christensen, M. Zhou, C.J. Summers, D.D. Dlott, N.N. Thadhani, Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy. J. Appl. Phys. 120(4), 043107 (2016). https://doi.org/10.1063/1.4959257

  45. M.I. Latypov, L.S. Toth, S.R. Kalidindi, Materials knowledge system for nonlinear composites. Comput. Methods Appl. Mech. Eng. 346, 180–196 (2019). https://doi.org/10.1016/j.cma.2018.11.034

    Article  Google Scholar 

  46. R. Lebensohn, C. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metallurgica et Materialia 41(9), 2611–2624 (1993). https://doi.org/10.1016/0956-7151(93)90130-k

    Article  CAS  Google Scholar 

  47. R. Lebensohn, C. Tomé, A self-consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystals. Mater. Sci. Eng. A 175(1–2), 71–82 (1994). https://doi.org/10.1016/0921-5093(94)91047-2

    Article  Google Scholar 

  48. A.D. Mackie, J.B. Avalos, V. Navas, Dissipative particle dynamics with energy conservation: modelling of heat flow. Phys. Chem. Chem. Phys. 1(9), 2039–2049 (1999). https://doi.org/10.1039/a809502g

    Article  CAS  Google Scholar 

  49. J.B. Maillet, M. Mareschal, L. Soulard, R. Ravelo, P.S. Lomdahl, T.C. Germann, B.L. Holian, Uniaxial hugoniostat: a method for atomistic simulations of shocked materials. Phys. Rev. E 63(1) (2000). https://doi.org/10.1103/physreve.63.016121

  50. L.E. Malvern, Introduction to the Mechanics of a Continuous Medium (Prentice-Hall Inc., 1969)

    Google Scholar 

  51. T.I. Mattox, J.P. Larentzos, S.G. Moore, C.P. Stone, D.A. Ibanez, A.P. Thompson, M. Lísal, J.K. Brennan, S.J. Plimpton, Highly scalable discrete-particle simulations with novel coarse-graining: accessing the microscale. Mol. Phys. 116(15–16), 2061–2069 (2018). https://doi.org/10.1080/00268976.2018.1471532

    Article  CAS  Google Scholar 

  52. A.E. Mattsson, P.A. Schultz, M.P. Desjarlais, T.R. Mattsson, K. Leung, Designing meaningful density functional theory calculations in materials science—a primer. Model. Simul. Mater. Sci. Eng. 13(1), R1–R31 (2004). https://doi.org/10.1088/0965-0393/13/1/r01

    Article  CAS  Google Scholar 

  53. T. Mattsson, L. Shulenburger, S. Root, K. Cochrane, Density functional theory (DFT) simulations of co2 under shock compression and design of liquid co2 experiments on z (2011)

    Google Scholar 

  54. M.A. Meyers, Dynamic Behavior of Materials (John Wiley, 1994)

    Book  Google Scholar 

  55. M.A. Meyers, H. Jarmakani, E.M. Bringa, B.A. Remington, Dislocations in shock compression and release, in Dislocations in Solids, chap. 89, ed. by J.P. Hirth, L. Kubin (Elsevier B. V., 2009)

    Google Scholar 

  56. T. Mura, Micromechanics of Defects in Solids (Kluwer Academic Publishers, 1991)

    Google Scholar 

  57. L. Murr, Examination of microstructural development by shock waves in condensed matter: theoretical and practical consequences, in Shock Waves in Condensed Matter – 1987, ed. by S. Schmidt, N. Holmes (Elsevier, Amsterdam, 1988), pp. 315–320

    Google Scholar 

  58. L. Murr, M. Pradhan-Advani, C. Niou, L. Schoenlein, Correlating critical process parameters and microstructures in explosively fabricated ceramic/metal matrix superconductors, in Shock Compression of Condensed Matter – 1989, ed. by S. Schmidt, J. Johnson, L. Davison (Elsevier, Amsterdam, 1990), pp. 587–590

    Google Scholar 

  59. L.E. Murr, K.P. Staudhammer, Shock wave sensitization, shock-induced reactivity, and new materials fabrication, in Shock Waves for Industrial Applications, chap. 12, ed. by L.E. Murr (Noyes Publications, 1988), pp. 441–472

    Google Scholar 

  60. V. Nesterenko, Dynamics of Heterogeneous Materials (Springer, 2001)

    Book  Google Scholar 

  61. S.R. Niezgoda, Y.C. Yabansu, S.R. Kalidindi, Understanding and visualizing microstructure and microstructure variance as a stochastic process. Acta Mater. 59(16), 6387–6400 (2011). https://doi.org/10.1016/j.actamat.2011.06.051

    Article  CAS  Google Scholar 

  62. K.T. Ramesh, High rates and impact experiments, in Springer Handbook of Experimental Solid Mechanics (Springer, 2008), pp. 929–960. https://doi.org/10.1007/978-0-387-30877-7_33

  63. R. Ravelo, B. Holian, T. Germann, P. Lomdahl, Constant-stress hugoniostat method for following the dynamical evolution of shocked matter. Phys. Rev. B 70(1) (2004). https://doi.org/10.1103/physrevb.70.014103

  64. M. Rice, J. Walsh, Dynamic compression of liquids from measurements on strong shock waves. J. Chem. Phys. 26, 824 (1957)

    Article  CAS  Google Scholar 

  65. M. Ripoll, P. Español, M.H. Ernst, Dissipative particle dynamics with energy conservation: heat conduction. Int. J. Mod. Phys. C 09(08), 1329–1338 (1998). https://doi.org/10.1142/s0129183198001205

    Article  Google Scholar 

  66. D.A. Scripka, G. Lee, Z. Kang, C.J. Summers, N.N. Thadhani, Time-resolved spectral response of asymmetrical optical microcavity structures under laser-driven shock compression. AIP Adv. 8(1), 015021 (2018). https://doi.org/10.1063/1.5000376

  67. M.S. Sellers, M. LĂ­sal, I. Schweigert, J.P. Larentzos, J.K. Brennan, Shock simulations of a single-site coarse-grain RDX model using the dissipative particle dynamics method with reactivity. Author(s) (2017). https://doi.org/10.1063/1.4971502

  68. C.B. Skidmore, D.S. Phillips, P.M. Howe, J.T. Mang, J.A. Romero, The evolution of microstructural changes in pressed HMX explosives, in Proceedings of the Eleventh International Detonation symposium (1998)

    Google Scholar 

  69. P. Sood, S. Dwivedi, J. Brennan, N. Thadhani, Y. Horie, DPDE-based mesoscale simulations of shock response of HE composites. J. Phys. Conf. Ser. 500(17), 172002 (2014). https://doi.org/10.1088/1742-6596/500/17/172002

  70. A.K. Stover, N.M. Krywopusk, J.D. Gibbins, T.P. Weihs, Mechanical fabrication of reactive metal laminate powders. J. Mater. Sci. 49(17), 5821–5830 (2014). https://doi.org/10.1007/s10853-014-8187-2

    Article  CAS  Google Scholar 

  71. A. Strachan, B.L. Holian, Energy exchange between mesoparticles and their internal degrees of freedom. Phys. Rev. Lett. 94(1) (2005). https://doi.org/10.1103/physrevlett.94.014301

  72. N. Thadhani, Shock induced chemical synthesis of intermetallic compounds, in Shock Compression of Condensed Matter – 1989, ed. by S. Schmidt, J. Johnson, L. Davison (Elsevier, Amsterdam, 1990), pp. 503–510

    Google Scholar 

  73. N. Thadhani, E. Dunbar, R. Graham, Characteristics of shock-compressed configuration of Ti and Si powder mixtures, in High Pressure Science and Technology 1993, ed. by S. Schmidt, J. Shaner, G. Samara, M. Ross (American Institute of Physics, New York, 1994), pp. 1307–1310

    Google Scholar 

  74. N.N. Thadhani, Shock-induced chemical reactions and synthesis of materials. Prog. Mater. Sci. 37, 117–226 (1993)

    Article  CAS  Google Scholar 

  75. N.N. Thadhani, Shock-induced and shock-assisted solid-state chemical reactions in powder mixtures. J. Appl. Phys. 76(4), 2129–2138 (1994)

    Article  CAS  Google Scholar 

  76. N.N. Thadhani, A. Gokhale, J. Quenneville, Meso-scale experimental and numerical studies for predicting macro-scale performance of advanced reactive materials. DTRA Proposal BRBAA08-Per3-E-2-0040 (2010)

    Google Scholar 

  77. N.N. Thadhani, R.A. Graham, T. Royal, E. Dunbar, M.U. Anderson, G.T. Holman, J. Appl. Phys. 82(3), 1113 (1997)

    Article  CAS  Google Scholar 

  78. S. Torquato, Random heterogeneous media: microstructure and improved bounds on effective properties. Appl. Mech. Rev. 44(2), 37 (1991). https://doi.org/10.1115/1.3119494

  79. S. Torquato, Random Heterogeneous Materials (Springer, New York, 2002). https://doi.org/10.1007/978-1-4757-6355-3

    Book  Google Scholar 

  80. P.B. Warren, Dissipative particle dynamics. Curr. Opin. Colloid Interface Sci. 3(6), 620–624 (1998). https://doi.org/10.1016/s1359-0294(98)80089-7

    Article  CAS  Google Scholar 

  81. C. Wei, B. Maddox, A. Stover, T. Weihs, V. Nesterenko, M. Meyers, Reaction in ni–al laminates by laser-shock compression and spalling. Acta Mater. 59(13), 5276–5287 (2011). https://doi.org/10.1016/j.actamat.2011.05.004

    Article  CAS  Google Scholar 

  82. C. Wei, V. Nesterenko, T. Weihs, B. Remington, H.S. Park, M. Meyers, Response of Ni/Al laminates to laser-driven compression. Acta Mater. 60(9), 3929–3942 (2012). https://doi.org/10.1016/j.actamat.2012.03.028

    Article  CAS  Google Scholar 

  83. N.S. Weingarten, W.D. Mattson, A.D. Yau, T.P. Weihs, B.M. Rice, A molecular dynamics study of the role of pressure on the response of reactive materials to thermal initiation. J. Appl. Phys. 107(9), 093517 (2010). https://doi.org/10.1063/1.3340965

  84. Q. Wu, F. Jing, Thermodynamic equation of state and application to Hugoniot predictions for porous materials. J. Appl. Phys. 80, 4343 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manny Gonzales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonzales, M., Thadhani, N.N. (2020). Challenges in Understanding the Dynamic Behavior of Heterogeneous Materials. In: Ghosh, S., Woodward, C., Przybyla, C. (eds) Integrated Computational Materials Engineering (ICME). Springer, Cham. https://doi.org/10.1007/978-3-030-40562-5_14

Download citation

Publish with us

Policies and ethics