Skip to main content

A Project-Centric Learning Strategy in Biotechnology

  • Conference paper
  • First Online:
The Impact of the 4th Industrial Revolution on Engineering Education (ICL 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1134))

Included in the following conference series:

Abstract

In this work we present the details on the initiative that has been taken by the Walter Booth School of Engineering Practice and Technology at McMaster University to inculcate multi-disciplinary project-based learning activities into the undergraduate curriculum. The approach aims to form groups of students from the different educational backgrounds at the school to solve engineering related problems focusing on building competencies in the students. Specifically, students from three disciplines, namely, Biotechnology, Manufacturing and Automation Engineering Technology are grouped to develop a biosensing platform to detect antibiotics in food. Students from each program will be contributing to a part of the project for which they have developed competencies in their courses. We present a framework to be followed to implement such initiatives, and the expected outcomes and the skills that the students are expected to gain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deane, P. (2011). http://fwi.mcmaster.ca/. Accessed 2 June 2019

  2. Springer, L., Stanne, M.E., Donovan, S.S.: Effects of small-group learning on undergraduates in science, mathematics, engineering, and technology: a meta-analysis. Rev. Educ. Res. 69, 21–51 (1999). https://doi.org/10.3102/00346543069001021

    Article  Google Scholar 

  3. Hake, R.R.: Interactive-engagement versus traditional methods: a six-thousand-student survey of mechanics test data for introductory physics courses. Am. J. Phys. 66, 64–74 (1998). https://doi.org/10.1119/1.18809

    Article  Google Scholar 

  4. Wage, K.E., Buck, J.R., Wright, C.H.G., Welch, T.B.: The signals and systems concept inventory. IEEE Trans. Educ. 48, 448–461 (2005). https://doi.org/10.1109/TE.2005.849746

    Article  Google Scholar 

  5. Buck, J.R., Wage, K.E.: Active and cooperative learning in signal processing courses. IEEE Signal Process. Mag. 22, 76–81 (2005). https://doi.org/10.1109/MSP.2005.1406489

    Article  Google Scholar 

  6. Prince, M.: Does active learning work? A review of the research. J. Eng. Educ. 93, 223–231 (2004). https://doi.org/10.1002/j.2168-9830.2004.tb00809.x

    Article  Google Scholar 

  7. Terenzini, P.T., Cabrera, A.F., Colbeck, C.L., Parente, J.M., Bjorklund, S.A.: Collaborative learning vs. lecture/discussion: students’ reported learning gains. J. Eng. Educ. 90, 123–130 (2001). https://doi.org/10.1002/j.2168-9830.2001.tb00579.x

    Article  Google Scholar 

  8. Dochy, F., Segers, M., Van den Bossche, P., Gijbels, D.: Effects of problem-based learning: a meta-analysis. Learn. Instr. 13, 533–568 (2003). https://doi.org/10.1016/S0959-4752(02)00025-7

    Article  Google Scholar 

  9. Capon, N., Kuhn, D.: What’s so good about problem-based learning? Cogn. Instr. 22, 61–79 (2004). https://doi.org/10.1207/s1532690Xci2201_3

    Article  Google Scholar 

  10. Gijbels, D., Dochy, F., Van den Bossche, P., Segers, M.: Effects of problem-based learning: a meta-analysis from the angle of assessment. Rev. Educ. Res. 75, 27–61 (2005). https://doi.org/10.3102/00346543075001027

    Article  Google Scholar 

  11. Kolb, D.A.: Experiential Learning: Experience as the Source of Learning and Development, 2nd edn. Pearson Education Inc., London (2015)

    Google Scholar 

  12. Prince, M.J., Felder, R.M.: Inductive teaching and learning methods: definitions, comparisons, and research bases. J. Eng. Educ. 95, 123–138 (2006). https://doi.org/10.1002/j.2168-9830.2006.tb00884.x

    Article  Google Scholar 

  13. Centea, D., Srinivasan, S.: A comprehensive assessment strategy for a PBL environment. Int. J. Innov. Res. Educ. Sci. 3, 364–372 (2016)

    Google Scholar 

  14. Centea, D., Srinivasan, S.: Assessment in problem-based learning using mobile technologies. In: Auer, M., Tsiatsos, T. (eds.) Mobile Technologies and Applications for the Internet of Things, pp. 337–346 (2019). https://doi.org/10.1007/978-3-030-11434-3_37

  15. Cummings, K., Marx, J., Ronald, T., Dennis, K.: Evaluating innovation in studio physics. Am. J. Phys. 67, S38–S44 (1999)

    Article  Google Scholar 

  16. Burrowes, P.A.: A student-centered approach to teaching general biology that really works: lord’s constructivist model put to a test. Am. Biol. Teacher 65, 491–502 (2003). https://doi.org/10.2307/4451548

    Article  Google Scholar 

  17. Beichner, R.: The Student-Centered Activities for Large Enrollment Undergraduate Programs (SCALE-UP) Project (2007)

    Google Scholar 

  18. Redish, E.F., Saul, J.M., Steinberg, R.N.: On the effectiveness of active-engagement microcomputer-based laboratories. Am. J. Phys. 65, 45–54 (1997). https://doi.org/10.1119/1.18498

    Article  Google Scholar 

  19. Freeman, S., O’Connor, E., Parks, J.W., Cunningham, M., Hurley, D., Haak, D., Dirks, C., Wenderoth, M.P.: Prescribed active learning increases performance in introductory biology. CBE Life Sci. Educ. 6, 132–139 (2007). https://doi.org/10.1187/cbe.06-09-0194

    Article  Google Scholar 

  20. Hoellwarth, C., Moelter, M.J., Knight, R.D.: A direct comparison of conceptual learning and problem solving ability in traditional and studio style classrooms. Am. J. Phys. 73, 459–462 (2005). https://doi.org/10.1119/1.1862633

    Article  Google Scholar 

  21. Knight, J.K., Wood, W.B.: Teaching more by lecturing less. Cell Biol. Educ. 4, 298–310 (2005). https://doi.org/10.1187/05-06-0082

    Article  Google Scholar 

  22. Sidhu, G., Srinivasan, S.: An intervention-based active-learning strategy to enhance student performance in mathematics. Int. J. Pedagog. Teacher Educ. 2, 277–288 (2018)

    Article  Google Scholar 

  23. Srinivasan, S., Centea, D.: An active learning strategy for programming courses. In: Auer, M., Tsiatsos, T. (eds.) Interactive Mobile Communication, Technologies and Learning. Springer, Hamilton, pp. 327–336 (2019). https://doi.org/10.1007/978-3-030-11434-3_36

  24. Farrell, J.J., Moog, R.S., Spencer, J.N.: A guided-inquiry general chemistry course. J. Chem. Educ. 76, 570 (1999). https://doi.org/10.1021/ed076p570

    Article  Google Scholar 

  25. Lewis, S.E., Lewis, J.E.: Departing from lectures: an evaluation of a peer-led guided inquiry alternative. J. Chem. Educ. 82, 135 (2005). https://doi.org/10.1021/ed082p135

    Article  Google Scholar 

  26. Roselli, R.J., Brophy, S.P.: Effectiveness of challenge-based instruction in biomechanics. J. Eng. Educ. 95, 311–324 (2006). https://doi.org/10.1002/j.2168-9830.2006.tb00906.x

    Article  Google Scholar 

  27. Hunter, A.-B., Laursen, S.L., Seymour, E.: Becoming a scientist: the role of undergraduate research in students’ cognitive, personal, and professional development. Sci. Educ. 91, 36–74 (2007). https://doi.org/10.1002/sce.20173

    Article  Google Scholar 

  28. Quay, J., Seaman, J.: John Dewey and Education Outdoors, 1st edn. Sense Publisher, Rotterdam (2013)

    Book  Google Scholar 

  29. University, M.: The Pivot (2019). https://www.eng.mcmaster.ca/about/pivot

  30. MIT, New Engineering Education Technology (2019). https://neet.mit.edu/. Accessed 2 June 2019

  31. Brawner, B.: Multidisciplinary project-based learning in STEM: a case study. In: Bogacki, P. (ed.) 27th International Conference on Technology Collegiate Mathematics, Las Vegas, Nevada, pp. 101–109 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seshasai Srinivasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Srinivasan, S., Rajabzadeh, A.R., Centea, D. (2020). A Project-Centric Learning Strategy in Biotechnology. In: Auer, M., Hortsch, H., Sethakul, P. (eds) The Impact of the 4th Industrial Revolution on Engineering Education. ICL 2019. Advances in Intelligent Systems and Computing, vol 1134. Springer, Cham. https://doi.org/10.1007/978-3-030-40274-7_80

Download citation

Publish with us

Policies and ethics