Skip to main content

Database-Driven High-Throughput Calculations and Machine Learning Models for Materials Design

  • Chapter
  • First Online:
Machine Learning Meets Quantum Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 968))

Abstract

This chapter reviews past and ongoing efforts in using high-throughput ab-initio calculations in combination with machine learning models for materials design. The primary focus is on bulk materials, i.e., materials with fixed, ordered, crystal structures, although the methods naturally extend into more complicated configurations. Efficient and robust computational methods, computational power, and reliable methods for automated database-driven high-throughput computation are combined to produce high-quality data sets. This data can be used to train machine learning models for predicting the stability of bulk materials and their properties. The underlying computational methods and the tools for automated calculations are discussed in some detail. Various machine learning models and, in particular, descriptors for general use in materials design are also covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term was recently popularized by a 2006 book by Kurzweil [21], but its use goes back to a 1958 account by Stanislaw Ulam of a discussion with John von Neumann that references a point in time of fundamental change due to runaway technological development [22].

References

  1. J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Nat. Mater. 5(11), 909 (2006)

    Article  ADS  Google Scholar 

  2. K. Kang, Y.S. Meng, J. Bréger, C.P. Grey, G. Ceder, Science 311(5763), 977 (2006)

    Article  ADS  Google Scholar 

  3. S. Kirklin, B. Meredig, C. Wolverton, Adv. Energy Mater. 3(2), 252 (2013)

    Article  Google Scholar 

  4. C. Ortiz, O. Eriksson, M. Klintenberg, Comput. Mater. Sci. 44(4), 1042 (2009)

    Article  Google Scholar 

  5. M. Klintenberg, O. Eriksson, Comput. Mater. Sci. 67, 282 (2013)

    Article  Google Scholar 

  6. G.K.H. Madsen, J. Am. Chem. Soc. 128(37), 12140 (2006)

    Article  Google Scholar 

  7. S. Wang, Z. Wang, W. Setyawan, N. Mingo, S. Curtarolo, Phys. Rev. X 1(2), 021012 (2011)

    Google Scholar 

  8. R. Armiento, B. Kozinsky, M. Fornari, G. Ceder, Phys. Rev. B 84(1) (2011)

    Google Scholar 

  9. R. Armiento, B. Kozinsky, G. Hautier, M. Fornari, G. Ceder, Phys. Rev. B 89(13), 134103 (2014)

    Article  ADS  Google Scholar 

  10. G. Hautier, A. Miglio, G. Ceder, G.M. Rignanese, X. Gonze, Nat. Commun. 4, 2292 (2013)

    Article  ADS  Google Scholar 

  11. S. Lebègue, T. Björkman, M. Klintenberg, R.M. Nieminen, O. Eriksson, Phys. Rev. X 3(3), 031002 (2013)

    Google Scholar 

  12. S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, O. Levy, Nat. Mater. 12(3), 191 (2013)

    Article  ADS  Google Scholar 

  13. G. Ceder, K.A. Persson, Sci. Amer. 309(6), 36 (2013)

    Article  Google Scholar 

  14. K. Alberi, M.B. Nardelli, A. Zakutayev, L. Mitas, S. Curtarolo, A. Jain, M. Fornari, N. Marzari, I. Takeuchi, M.L. Green, M. Kanatzidis, M.F. Toney, S. Butenko, B. Meredig, S. Lany, U. Kattner, A. Davydov, E.S. Toberer, V. Stevanovic, A. Walsh, N.G. Park, A. Aspuru-Guzik, D.P. Tabor, J. Nelson, J. Murphy, A. Setlur, J. Gregoire, H. Li, R. Xiao, A. Ludwig, L.W. Martin, A.M. Rappe, S.-H. Wei, J. Perkins, J. Phys. D: Appl. Phys. 52(1), 013001 (2019)

    Article  ADS  Google Scholar 

  15. F. Oba, Y. Kumagai, Appl. Phys. Express 11(6), 060101 (2018)

    Article  ADS  Google Scholar 

  16. A. Jain, G. Hautier, C.J. Moore, S. Ping Ong, C.C. Fischer, T. Mueller, K.A. Persson, G. Ceder, Comput. Mater. Sci. 50(8), 2295 (2011)

    Article  Google Scholar 

  17. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1(1), 011002 (2013)

    Article  ADS  Google Scholar 

  18. Executive Office of the President National Science and Technology Council, Washington. Materials Genome Initiative for Global Competitiveness (2011). https://www.mgi.gov/sites/default/files/documents/materials_genome_initiative-final.pdf; https://www.mgi.gov/

  19. K. Rajan, Mater. Today 8(10), 38 (2005)

    Article  Google Scholar 

  20. J.R. Rodgers, D. Cebon, MRS Bull. 31(12), 975 (2006)

    Article  Google Scholar 

  21. R. Kurzweil, The Singularity Is Near: When Humans Transcend Biology (Penguin Books, New York, 2006)

    Google Scholar 

  22. S. Ulam, Bull. Amer. Math. Soc. 64(3), 1 (1958)

    Article  MathSciNet  Google Scholar 

  23. P. Hohenberg, W. Kohn, Phys. Rev. 136(3B), B864 (1964)

    Article  ADS  Google Scholar 

  24. W. Kohn, L.J. Sham, Phys. Rev. 140(4A), A1133 (1965)

    Article  ADS  Google Scholar 

  25. J.P. Perdew, K. Schmidt, in AIP Conference Proceedings, vol. 577 (AIP, College Park, 2001), pp. 1–20

    Google Scholar 

  26. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  27. V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys. Condens. Matter 9(4), 767 (1997)

    Article  ADS  Google Scholar 

  28. F. Zhou, M. Cococcioni, C.A. Marianetti, D. Morgan, G. Ceder, Phys. Rev. B 70(23), 235121 (2004)

    Article  ADS  Google Scholar 

  29. V.L. Chevrier, S.P. Ong, R. Armiento, M.K.Y. Chan, G. Ceder, Phys. Rev. B 82(7), 075122 (2010)

    Article  ADS  Google Scholar 

  30. S. Kümmel, L. Kronik, J.P. Perdew, Phys. Rev. Lett. 93(21), 213002 (2004)

    Article  ADS  Google Scholar 

  31. R. Armiento, S. Kümmel, T. Körzdörfer, Phys. Rev. B 77(16), 165106 (2008)

    Article  ADS  Google Scholar 

  32. A.E. Mattsson, R.R. Wixom, R. Armiento, Phys. Rev. B 77(15), 155211 (2008)

    Article  ADS  Google Scholar 

  33. P. Rinke, A. Janotti, M. Scheffler, C.G. Van de Walle, Phys. Rev. Lett. 102(2), 026402 (2009)

    Article  ADS  Google Scholar 

  34. V. Vlček, G. Steinle-Neumann, L. Leppert, R. Armiento, S. Kümmel, Phys. Rev. B 91(3), 035107 (2015)

    Article  ADS  Google Scholar 

  35. J.P. Perdew, Chem. Phys. Lett. 64(1), 127 (1979)

    Article  ADS  Google Scholar 

  36. J.P. Perdew, A. Zunger, Phys. Rev. B 23(10), 5048 (1981)

    Article  ADS  Google Scholar 

  37. R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61(3), 689 (1989)

    Article  ADS  Google Scholar 

  38. M. Städele, M. Moukara, J.A. Majewski, P. Vogl, A. Görling, Phys. Rev. B 59(15), 10031 (1999)

    Article  ADS  Google Scholar 

  39. A.D. Becke, J. Chem. Phys. 98(7), 5648 (1993)

    Article  ADS  Google Scholar 

  40. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118(18), 8207 (2003)

    Article  ADS  Google Scholar 

  41. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 124(21), 219906 (2006)

    Article  ADS  Google Scholar 

  42. L. Hedin, Phys. Rev. 139(3A), A796 (1965)

    Article  ADS  Google Scholar 

  43. R. van Leeuwen, E.J. Baerends, Phys. Rev. A 49(4), 2421 (1994)

    Article  ADS  Google Scholar 

  44. O. Gritsenko, R. van Leeuwen, E. van Lenthe, E.J. Baerends, Phys. Rev. A 51(3), 1944 (1995)

    Article  ADS  Google Scholar 

  45. A.D. Becke, E.R. Johnson, J. Chem. Phys. 124(22), 221101 (2006)

    Article  ADS  Google Scholar 

  46. N. Umezawa, Phys. Rev. A 74(3), 032505 (2006)

    Article  ADS  Google Scholar 

  47. E. Räsänen, S. Pittalis, C.R. Proetto, J. Chem. Phys. 132(4), 044112 (2010)

    Article  ADS  Google Scholar 

  48. F. Tran, P. Blaha, Phys. Rev. Lett. 102(22), 226401 (2009)

    Article  ADS  Google Scholar 

  49. M.J.T. Oliveira, E. Räsänen, S. Pittalis, M.A.L. Marques, J. Chem. Theory Comput. 6(12), 3664 (2010)

    Article  Google Scholar 

  50. D.J. Singh, Phys. Rev. B 82(20), 205102 (2010)

    Article  ADS  Google Scholar 

  51. R. van Leeuwen, E.J. Baerends, Phys. Rev. A 51(1), 170 (1995)

    Article  ADS  Google Scholar 

  52. A.P. Gaiduk, V.N. Staroverov, Phys. Rev. A 83(1), 012509 (2011)

    Article  ADS  Google Scholar 

  53. A. Karolewski, R. Armiento, S. Kümmel, J. Chem. Theory Comput. 5(4), 712 (2009)

    Article  Google Scholar 

  54. R. Armiento, S. Kümmel, Phys. Rev. Lett. 111(3), 036402 (2013)

    Article  ADS  Google Scholar 

  55. T. Aschebrock, R. Armiento, S. Kümmel, Phys. Rev. B 96(7), 075140 (2017)

    Article  ADS  Google Scholar 

  56. T.F.T. Cerqueira, M.J.T. Oliveira, M.A.L. Marques, J. Chem. Theory Comput. 10(12), 5625 (2014)

    Article  Google Scholar 

  57. F. Tran, P. Blaha, M. Betzinger, S. Blügel, Phys. Rev. B 91(16), 165121 (2015)

    Article  ADS  Google Scholar 

  58. A. Lindmaa, R. Armiento, Phys. Rev. B 94(15), 155143 (2016)

    Article  ADS  Google Scholar 

  59. T. Aschebrock, R. Armiento, S. Kümmel, Phys. Rev. B 95(24), 245118 (2017)

    Article  ADS  Google Scholar 

  60. R. Armiento, A.E. Mattsson, Phys. Rev. B 72(8), 085108 (2005)

    Article  ADS  Google Scholar 

  61. A.E. Mattsson, R. Armiento, Phys. Rev. B 79(15), 155101 (2009)

    Article  ADS  Google Scholar 

  62. A.E. Mattsson, R. Armiento, J. Paier, G. Kresse, J.M. Wills, T.R. Mattsson, J. Chem. Phys. 128(8), 084714 (2008)

    Article  ADS  Google Scholar 

  63. P. Haas, F. Tran, P. Blaha, Phys. Rev. B 79(8), 085104 (2009)

    Article  ADS  Google Scholar 

  64. P. Haas, F. Tran, P. Blaha, Phys. Rev. B 79(20), 209902 (2009)

    Article  ADS  Google Scholar 

  65. Z. Wu, R.E. Cohen, Phys. Rev. B 73(23), 235116 (2006)

    Article  ADS  Google Scholar 

  66. Y. Zhao, D.G. Truhlar, Phys. Rev. B 78(19), 197101 (2008)

    Article  ADS  Google Scholar 

  67. Z. Wu, R.E. Cohen, Phys. Rev. B 78(19), 197102 (2008)

    Article  ADS  Google Scholar 

  68. Y. Zhao, D.G. Truhlar, J. Chem. Phys. 128(18), 184109 (2008)

    Article  ADS  Google Scholar 

  69. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100(13), 136406 (2008)

    Article  ADS  Google Scholar 

  70. A.E. Mattsson, R. Armiento, T.R. Mattsson, Phys. Rev. Lett. 101(23), 239701 (2008)

    Article  ADS  Google Scholar 

  71. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 101(23), 239702 (2008)

    Article  ADS  Google Scholar 

  72. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 102(3), 039902 (2009)

    Article  ADS  Google Scholar 

  73. J. Sun, A. Ruzsinszky, J.P. Perdew, Phys. Rev. Lett. 115(3), 036402 (2015)

    Article  ADS  Google Scholar 

  74. J. Sun, R.C. Remsing, Y. Zhang, Z. Sun, A. Ruzsinszky, H. Peng, Z. Yang, A. Paul, U. Waghmare, X. Wu, M.L. Klein, J.P. Perdew, Nat. Chem. 8(9), 831 (2016). https://doi.org/10.1038/nchem.2535. https://www.nature.com/articles/nchem.2535

  75. Y. Zhang, D.A. Kitchaev, J. Yang, T. Chen, S.T. Dacek, R.A. Sarmiento-Pérez, M.A.L. Marques, H. Peng, G. Ceder, J.P. Perdew, J. Sun, npj Comput. Mater. 4(1), 9 (2018). https://doi.org/10.1038/s41524-018-0065-z. https://www.nature.com/articles/s41524-018-0065-z

  76. M. Ekholm, D. Gambino, H.J.M. Jönsson, F. Tasnádi, B. Alling, I.A. Abrikosov, Phys. Rev. B 98(9), 094413 (2018). https://doi.org/10.1103/PhysRevB.98.094413. https://link.aps.org/doi/10.1103/PhysRevB.98.094413

  77. S. Grimme, J. Comput. Chem. 27(15), 1787 (2006)

    Article  Google Scholar 

  78. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132(15), 154104 (2010)

    Article  ADS  Google Scholar 

  79. A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 102(7), 073005 (2009)

    Article  ADS  Google Scholar 

  80. A. Tkatchenko, R.A. DiStasio, R. Car, M. Scheffler, Phys. Rev. Lett. 108(23), 236402 (2012)

    Article  ADS  Google Scholar 

  81. A. Ambrosetti, A.M. Reilly, R.A. DiStasio, A. Tkatchenko, J. Chem. Phys. 140(18), 18A508 (2014)

    Google Scholar 

  82. S.N. Steinmann, C. Corminboeuf, J. Chem. Theory Comput. 7(11), 3567 (2011)

    Article  Google Scholar 

  83. S.N. Steinmann, C. Corminboeuf, J. Chem. Phys. 134(4), 044117 (2011)

    Article  ADS  Google Scholar 

  84. M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92(24), 246401 (2004)

    Article  ADS  Google Scholar 

  85. K. Lee, E.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Phys. Rev. B 82(8), 081101 (2010)

    Article  ADS  Google Scholar 

  86. K. Berland, P. Hyldgaard, Phys. Rev. B 89(3), 035412 (2014)

    Article  ADS  Google Scholar 

  87. J. Sun, B. Xiao, Y. Fang, R. Haunschild, P. Hao, A. Ruzsinszky, G.I. Csonka, G.E. Scuseria, J.P. Perdew, Phys. Rev. Lett. 111(10), 106401 (2013)

    Article  ADS  Google Scholar 

  88. A.R. Akbarzadeh, V. Ozoliņš, C. Wolverton, Adv. Mater. 19(20), 3233 (2007)

    Article  Google Scholar 

  89. S.P. Ong, L. Wang, B. Kang, G. Ceder, Chem. Mater. 20(5), 1798 (2008)

    Article  Google Scholar 

  90. G. Hautier, S.P. Ong, A. Jain, C.J. Moore, G. Ceder, Phys. Rev. B 85(15), 155208 (2012)

    Article  ADS  Google Scholar 

  91. S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl, C.M. Wolverton, npj Comput. Mater. 1, 15010 (2015)

    Google Scholar 

  92. I.E. Castelli, F. Hüser, M. Pandey, H. Li, K.S. Thygesen, B. Seger, A. Jain, K.A. Persson, G. Ceder, K.W. Jacobsen, Adv. Energy Mater. 5(2), 1400915 (2015)

    Article  Google Scholar 

  93. M. de Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C. Krishna Ande, S. van der Zwaag, J.J. Plata, C. Toher, S. Curtarolo, G. Ceder, K.A. Persson, M. Asta, Sci. Data 2, 150009 (2015)

    Article  Google Scholar 

  94. M. de Jong, W. Chen, H. Geerlings, M. Asta, K.A. Persson, Sci. Data 2, 150053 (2015)

    Article  Google Scholar 

  95. I. Petousis, D. Mrdjenovich, E. Ballouz, M. Liu, D. Winston, W. Chen, T. Graf, T.D. Schladt, K.A. Persson, F.B. Prinz, Sci. Data 4, 160134 (2017)

    Article  Google Scholar 

  96. G. Petretto, S. Dwaraknath, H.P.C. Miranda, D. Winston, M. Giantomassi, M.J. van Setten, X. Gonze, K.A. Persson, G. Hautier, G.M. Rignanese, Sci. Data 5, 180065 (2018)

    Article  Google Scholar 

  97. E. Kim, K. Huang, A. Saunders, A. McCallum, G. Ceder, E. Olivetti, Chem. Mater. 29(21), 9436 (2017)

    Article  Google Scholar 

  98. K. Mathew, C. Zheng, D. Winston, C. Chen, A. Dozier, J.J. Rehr, S.P. Ong, K.A. Persson, Sci. Data 5, 180151 (2018)

    Article  Google Scholar 

  99. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108(5), 058301 (2012)

    Article  ADS  Google Scholar 

  100. F. Faber, A. Lindmaa, O.A.V. Lilienfeld, R. Armiento, Int. J. Quantum Chem. 115(16), 1094 (2015)

    Article  Google Scholar 

  101. P.P. Ewald, Ann. Phys. 369(3), 253 (1921)

    Article  Google Scholar 

  102. G. Bergerhoff, R. Hundt, R. Sievers, I.D. Brown, J. Chem. Inf. Comput. Sci. 23(2), 66 (1983)

    Article  Google Scholar 

  103. A. Belsky, M. Hellenbrandt, V.L. Karen, P. Luksch, Acta Cryst. B 58(3–1), 364 (2002)

    Article  Google Scholar 

  104. F.A. Faber, A. Lindmaa, O.A.v. Lilienfeld, R. Armiento, Phys. Rev. Lett. 117(13), 135502 (2016)

    Google Scholar 

  105. C. Tholander, C.B.A. Andersson, R. Armiento, F. Tasnádi, B. Alling, J. Appl. Phys. 120(22), 225102 (2016)

    Article  ADS  Google Scholar 

  106. C. Bratu, Machine Learning of Crystal Formation Energies with Novel Structural Descriptors. Master’s Thesis, Linköping University, Sweden, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-143203

    Google Scholar 

  107. L. Ward, R. Liu, A. Krishna, V.I. Hegde, A. Agrawal, A. Choudhary, C. Wolverton, Phys. Rev. B 96(2), 024104 (2017)

    Article  ADS  Google Scholar 

  108. F.A. Faber, A.S. Christensen, B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 148(24), 241717 (2018)

    Article  ADS  Google Scholar 

  109. H. Huo, M. Rupp (2017). arXiv:1704.06439

    Google Scholar 

  110. K.T. Schütt, H.E. Sauceda, P.J. Kindermans, A. Tkatchenko, K.R. Müller, J. Chem. Phys. 148(24), 241722 (2018)

    Article  ADS  Google Scholar 

  111. W. Ye, C. Chen, Z. Wang, I.H. Chu, S.P. Ong, Nat. Commun. 9(1), 3800 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks Anatole von Lilienfeld and Felix Faber for many insightful discussions on topics in the overlap of machine learning and materials design. Joel Davidsson is acknowledged for help with supervising the master’s thesis discussed in the text as Ref. [106]. The author acknowledges support from the Swedish e-Science Centre (SeRC), Swedish Research Council (VR) Grants No. 2016-04810, and the Centre in Nano science and Nanotechnology (CeNano) at Linköping University. Some of the discussed computations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the National Supercomputer Centre (NSC) at Linköping University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rickard Armiento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Armiento, R. (2020). Database-Driven High-Throughput Calculations and Machine Learning Models for Materials Design. In: Schütt, K., Chmiela, S., von Lilienfeld, O., Tkatchenko, A., Tsuda, K., Müller, KR. (eds) Machine Learning Meets Quantum Physics. Lecture Notes in Physics, vol 968. Springer, Cham. https://doi.org/10.1007/978-3-030-40245-7_17

Download citation

Publish with us

Policies and ethics