Skip to main content

Evaluation of Hyperthermic Properties of Magnetic Nano-Heterostructures Based on Gold-Iron Oxide and Noble Metal-Ferrite Systems

  • Chapter
  • First Online:
Magnetic Nanoheterostructures

Abstract

Magnetic particle hyperthermia is potentially the most significant and promising methods for cancer treatment. The high efficiency of this magnetic hyperthermia therapy is derived from a capability of nano-heterostructures to generate site-specific heating of tumors tissues due to their unique physicochemical properties with an ability to be functionalized at molecular and cellular level for biochemical interactions. Au-Fe3O4 nano-heterostructures are gaining ample significance in industry and research because of their superior properties coming from both individual and combinational features of gold and iron oxide nanoparticles. In this chapter, we have discussed the heat dissipation mechanisms and various parameters crucial for assessing the hyperthermia efficacy of gold-iron oxide and noble metal-ferrite systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin MR, Umapathi S, Mahendrakar H, Laemthong T, Coleman H, Muchangi D, Santra S, Nath M, Barua S (2018) J Nanobiotechnol 16:1

    Article  Google Scholar 

  • Abenojar EC, Wickramasinghe S, Bas-Concepcion J, Samia ACS (2016) Prog Nat Sci Mater Int 26:440

    Article  CAS  Google Scholar 

  • Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A, Kamrava SK (2016) J Control Release 235:205

    Article  CAS  Google Scholar 

  • Chandra S, Frey Huls NA, Phan MH, Srinath S, Garcia MA, Lee Y, Wang C, Sun S, Iglesias Ò, Srikanth H (2014) Nanotechnology 25:055702

    Google Scholar 

  • Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Chem Soc Rev 41:4306

    Article  CAS  Google Scholar 

  • Dabbagh A, Abdullah BJJ, Abdullah H, Hamdi M, Kasim NHA (2015) J Pharm Sci 104:2414

    Article  CAS  Google Scholar 

  • Daboin V, Briceño S, Suárez J, Carrizales-silva L, Silva P, Gonzalez G, Daboin V, Brice S (2019) J Magn Magn Mater 479:91

    Article  CAS  Google Scholar 

  • Fantechi E, Roca AG, Sepúlveda B, Torruella P, Estradé S, Peiró F, Coy E, Jurga S, Bastús NG, Nogués J, Puntes V (2017) Chem Mater 29:4022–4035

    Article  CAS  Google Scholar 

  • Garaio E, Sandre O, Collantes JM, Garcia JA, Mornet S, Plazaola F (2015) Nanotechnology 26:15704

    Article  Google Scholar 

  • Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Ann Surg 146:596

    Article  CAS  Google Scholar 

  • Guardia P, Nitti S, Materia ME, Pugliese G, Yaacoub N, Greneche JM, Lefevre C, Manna L, Pellegrino T (2017) J Mater Chem B 5:4587

    Article  CAS  Google Scholar 

  • Gutiérrez TJ, Alvarez VA (2018) In: Hussain CM (ed) Handbook of nanomaterials for industrial applications. Elsevier, pp 563–576

    Google Scholar 

  • Hervault A, Thanh NTK (2014) Nanoscale 6:11553

    Article  CAS  Google Scholar 

  • Javed Y, Ali K, Jamil Y (2017) In: Sharma SK (ed) Complex magnetic nanostructures. Springer International, pp 393–424

    Google Scholar 

  • Kozissnik B, Bohorquez AC, Dobson J, Rinaldi C (2013) Int J Hyperth 29:706

    Article  Google Scholar 

  • LeBrun A, Zhu L (2018) In: Shrivastava D (ed) Theory and applications of heat transfer in humans, pp 631–667

    Google Scholar 

  • Lemal P, Balog S, Geers C, Taladriz-Blanco P, Palumbo A, Hirt AM, Rothen-Rutishauser B, Petri-Fink A (2019) J Magn Magn Mater 474:637

    Article  CAS  Google Scholar 

  • León Félix L, Sanz B, Sebastián V, Torres TE, Sousa MH, Coaquira JAH, Ibarra MR, Goya GF (2019) Sci Rep 9:1

    Google Scholar 

  • Lettieri-Barbato D, Aquilano K (2018) Front Oncol 8:148

    Article  Google Scholar 

  • Liu B, Zhang H, Ding Y (2018) Chin Chem Lett 29:1725

    Article  CAS  Google Scholar 

  • López-Ortega A, Estrader M, Salazar-Alvarez G, Roca AG, Nogués J (2015) Phys Rep 553:1

    Google Scholar 

  • Mezni A, Balti I, Mlayah A, Jouini N, Smiri LS (2013) J Phys Chem C 117:16166

    Article  CAS  Google Scholar 

  • Mohammad F, Balaji G, Weber A, Uppu RM, Kumar CSSR (2010) J Phys Chem C 114:19194

    Article  CAS  Google Scholar 

  • Negut I, Grumezescu V (2019) In: Grumezescu AM (ed) Biomedical applications of nanoparticles. William Andrew, pp 63–90

    Google Scholar 

  • Nguyen DT, Park DW, Kim KS (2011) J Nanosci Nanotechnol 11:7214

    Article  CAS  Google Scholar 

  • Perigo EA, Hemery G, Sandre O, Ortega D, Garaio E, Plazaola F (2015) Appl Phys Rev 2:041302

    Article  Google Scholar 

  • Ravichandran M, Velumani S, Ramirez JT, Vera A, Leija L (2018) Artif Cells Nanomed Biotechnol 46:S993

    Google Scholar 

  • Sabale S, Jadhav V, Mane-Gavade S, Yu XY (2019) Acta Metall Sin (Engl Lett) 32:719

    Google Scholar 

  • Sanchez LM, Alvarez VA (2019) Bioengineering 6:75

    Article  Google Scholar 

  • Sangaa D, Khongorzul B, Uyanga E, Jargalan N, Tsogbadrakh N, Hirazawa H (2018) Solid State Phenom 271:51

    Article  Google Scholar 

  • Shaterabadi Z, Nabiyouni G, Soleymani M (2018) Prog Biophys Mol Biol 133:9

    Article  CAS  Google Scholar 

  • Shevchenko EV, Bodnarchuk MI, Kovalenko MV, Talapin DV, Smith RK, Aloni S, Heiss W, Alivisatos AP (2008) Adv Mater 20:4323

    Article  CAS  Google Scholar 

  • Stigliano RV, Shubitidze F, Petryk JD, Shoshiashvili L, Petryk AA, Hoopes PJ (2016) Int J Hyperth 32:735

    Google Scholar 

  • Suriyanto, Ng EYK, Kumar SD (2017) Biomed Eng Online 16(1)

    Google Scholar 

  • Wildeboer RR, Southern P, Pankhurst QA (2014) J Phys D Appl Phys 47

    Google Scholar 

  • Wu YN, Chen DH, Shi XY, Lian CC, Wang TY, Yeh CS, Ratinac KR, Thordarson P, Braet F, Bin Shieh D (2011) Nanomed Nanotechnol Biol Med 7:420

    Google Scholar 

  • Xu Z, Hou Y, Sun S (2007) J Am Chem Soc 129:8698

    Article  CAS  Google Scholar 

  • Yu X, Yang R, Wu C, Zhang W, Deng D, Zhang X, Li Y (2020) In: Wahab MA (ed) Proceedings of the 13th international conference on damage assessment of structures. Lecture notes in mechanical engineering. Springer, Singapore, pp 937–943

    Google Scholar 

  • Zhang H, Zhang YF, Gao F, Li GL, He Y, Peng ML, Fan HM, Liu XL (2018) Sci China Life Sci 61:400

    Article  CAS  Google Scholar 

  • Zhu L, Deng X, Hu Y, Liu J, Ma H, Zhang J, Fu J, He S, Wang J, Wang B, Xue D, Peng Y (2018) Nanoscale 10:21499

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sarveena or S. K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarveena et al. (2020). Evaluation of Hyperthermic Properties of Magnetic Nano-Heterostructures Based on Gold-Iron Oxide and Noble Metal-Ferrite Systems. In: Sharma, S., Javed, Y. (eds) Magnetic Nanoheterostructures. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-39923-8_10

Download citation

Publish with us

Policies and ethics