Skip to main content

Environmental Quality of Groundwater in Contaminated Areas—Challenges in Eastern Baltic Region

  • Chapter
  • First Online:
Water Resources Quality and Management in Baltic Sea Countries

Abstract

The lack of water in the future will force society to find more sophisticated solutions for treatment and improvement of groundwater wherever it comes from. Contamination of soil and groundwater is a legacy of modern society, prevention of contaminants spread and secondary water reuse options shall be considered. The aim of the book chapter is to give oversight view on problems and challenges linked to groundwater quality in Eastern Baltic region whilst through case studies explaining the practical problems with groundwater monitoring, remediation and overall environmental quality analysis. The reader will get introduced with case studies in industry levels as credibility of scientific fundamentals is higher when practical solutions are shown. Eastern Baltic countries experience cover contamination problems that are mainly of historic origin due to former Soviet military and industrial policy implementation through decades. Short summaries for each case study are given and main conclusions provided in form of recommendations at the very end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hogland M, Burlakovs J, Celma G, Vincevica-Gaile Z, Hogland W (2018) Preliminary analysis of elements in water supply sludge at Ronneholms Mosse fields, southern Sweden. In: SGEM2012 Conference Proceedings, vol 1.4, pp 111–118

    Google Scholar 

  2. Carson R (1965) Silent spring. Chapman & Hall, London

    Google Scholar 

  3. Juhna T, Klavins M (2001) Water-quality changes in Latvia and Riga 1980–2000: possibilities and problems. AMBIO J Human Environ 30(4):306–315

    Article  CAS  Google Scholar 

  4. Klavins M, Rodinovs V, Kokorite I (2002) Aquatic chemistry of surface waters of Latvia. University of Latvia, Riga

    Google Scholar 

  5. Burlakovs J, Vircavs M (2011) Possible applications of soil remediation technologies in Latvia. Environ Clim Technol 13(7):46–53

    Google Scholar 

  6. Lee SM, Laldawngliana C, Tiwari D (2012) Iron oxide nano-particles immobilized- sand material in the treatment of Cu(II), Cd(II) and Pb(II) contaminated wastewaters. Chem Eng J 195–196:103–111

    Article  CAS  Google Scholar 

  7. Vanheusden B (2009) Recent development in European policy regarding brownfield remediation. Environ Pract 11(4):256–262

    Article  Google Scholar 

  8. Burlakovs J (2015) Heavy metals contamination remediation with soil amendments. Dissertation thesis, University of Latvia, Riga

    Google Scholar 

  9. Reddy KR, Adams JF, Richardson C (1999) Potential technologies for remediation of brownfield. Pract Periodical Hazard Toxic Radioactive Waste Manage 3(2):61–68

    Article  CAS  Google Scholar 

  10. Burlakovs J, Jani Y, Kriipsalu M, Vincevica-Gaile Z, Kaczala F, Celma G, Ozola R, Rozina L, Rudovica V, Hogland M, Viksna A, Pehme KM, Hogland W, Klavins M (2018) On the way to `Zero Waste` management: Recovery potential of elements, including rare earth elements, from fine fraction of waste. J Clean Prod 186:81–90

    Article  CAS  Google Scholar 

  11. Directive 2006/12/EC of the European Parliament and of the Council of 5 April 2006 on waste. Official Journal of the European Union, L114, pp 9–21

    Google Scholar 

  12. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Union, L327, pp 1–72

    Google Scholar 

  13. Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Official Journal of the European Union, L372, pp 19–31

    Google Scholar 

  14. EURODEMO (2018) http://www.eugris.info/DisplayProject.asp?ProjectID=4500. Accessed on 01 Aug 2019

  15. Critto A, Cantarella L, Carlon C, Giove S, Petrzzelli G, Marcomini A (2006) Decision support-oriented selection of remediation technologies to rehabilitate contaminated sites. Integr Environ Assess Manage 2(3):273–285

    Google Scholar 

  16. Burlakovs J, Klavins M, Ernsteins R, Ruskulis A (2013) Contamination in industrial sites and environmental management in Latvia. Proc World Acad Sci Engi Technol 76:463–468

    Google Scholar 

  17. Burlakovs J, Kaczala F, Stapkevica M, Rudovica V, Orupõld K, Vincevica-Gaile Z, Bhatnagar A, Kriipsalu M, Hogland M, Hogland W, Klavins M (2016) Mobility of metals and valorization of sorted fine fraction of waste after landfill excavation. Waste Biomass Valorization 7:593–602

    Article  CAS  Google Scholar 

  18. Burlakovs J, Kriipsalu M, Arina D, Kaczala F, Shmarin S, Denafas G, Hogland W (2013) Former dump sites and the landfill mining perspectives in Baltic countries and Sweden: the status. In: SGEM2013 Conference Proceedings, vol 1, pp 485–492

    Google Scholar 

  19. Klavins M, Rodinov V, Cimdins P, Klavina I, Purite M, Druvietis I (1996) Well water quality in Latvia. Int J Environ Stud 50(1):41–50

    Article  CAS  Google Scholar 

  20. Bottero JY, Auffan M, Borschnek D, Chaurand P, Labille J, Levard C, Masion A, Tella M, Rose J, Wiesner MR (2015) Nanotechnology, global development in the frame of environmental risk forecasting. A necessity of interdisciplinary researches. Comptes Rendus Geosci 347(1):35–42

    Article  Google Scholar 

  21. Burlakovs J, Kriipsalu M, Porshnov D, Jani Y, Ozols V, Pehme K-M, Rudovica V, Grinfelde I, Pilecka J, Vincevica-Gaile Z, Turkadze T, Hoglan W, Klavins M (2019) Gateway of landfilled plastic waste towards circular economy in Europe. Separations 6(2):25

    Article  CAS  Google Scholar 

  22. Hogland M, Arina D, Kriipsalu M, Jani Y, Kaczala F, Salomão AL, Orupõld K, Pehme KM, Rudovica V, Denafas G, Burlakovs J, Vincevica-Gaile Z, Hogland W (2018) Remarks on four novel landfill mining case studies in Estonia and Sweden. J Mater Cycles Waste Manage 20(2):1355–1363

    Article  Google Scholar 

  23. Klaine SJ, Koelmans AA, Horne N, Carley S, Handy RD, Kapustka L (2012) Paradigms to assess the environmental impact of manufactured nanomaterials. Environ Toxicol Chem 31:3–14

    Article  CAS  Google Scholar 

  24. Tolaymat T, El Badawy A, Sequeira R, Genaidy A (2015) An integrated science-based methodology to assess potential risks and implications of engineered nanomaterials. J Hazard Mater 298:270–281

    Article  CAS  Google Scholar 

  25. Mitrano DM, Motellier S, Clavaguera S, Nowack B (2015) Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ Int 77:132–147

    Article  CAS  Google Scholar 

  26. Burlakovs J, Kriipsalu M, Klavins M, Bhatnagar A, Vincevica-Gaile Z, Stenis J, Jani Y, Mykhaylenko V, Denafas G, Turkadze T, Hogland M, Rudovica V, Kaczala F, Møller Rosendal R, Hogland W (2017) Paradigms on landfill mining: from dump site scavenging to ecosystem services revitalization. Resour Conserv Recycl 123:73–84

    Article  Google Scholar 

  27. Hincapie I, Caballero-Guzman A, Hiltbrunner D, Nowack B (2015) Use of engineered nanomaterials in the construction industry with specific emphasis on paints and their flows in construction and demolition waste in Switzerland. Waste Manag 43:398–406

    Article  CAS  Google Scholar 

  28. Wang Y, Kalinina A, Sun T, Nowack B (2016) Probabilistic modeling of the flows and environmental risks of nano-silica. Sci Total Environ 545–546:67–76

    Article  CAS  Google Scholar 

  29. Moghaddasi S, Khoshgoftarmanesh AH, Karimzadeh F (2015) Fate and effect of tire rubber ash nano-particles (RANPs) in cucumber. Ecotoxicol Environ Saf 115:137–143

    Article  CAS  Google Scholar 

  30. Rajarao R, Farzan AR, Khanna R, Sahajwalla V (2015) Synthesis of SiC/Si3N4 nanocomposite by using automotive waste tyres as resource. J Indus Eng Chem 29:35–38

    Article  CAS  Google Scholar 

  31. Patil SS, Utkarsha U, Shedbalkar B, Truskewycz A, Chopade BA, Ball AS (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Innov 5:10–21

    Article  Google Scholar 

  32. Burlakovs J, Gorbunovs E (2012) Contamination problems in former military areas: case study in Riga. In: Proceedings of Conference Research for Rural Engineering, vol 2, pp 129–134

    Google Scholar 

  33. Burlakovs J, Kasparinskis R, Klavins M (2012) Leaching of contamination from stabilization/solidification remediated soils of different texture. Environ Clim Technol 9:12–16

    Google Scholar 

  34. Burlakovs J, Purmalis O (2017) Reviving prospects for lake restoration-investigating the geochemistry of lake Aluksne sediments. Res Rural Dev 23:145–152

    Google Scholar 

  35. Burlakovs J, Vircavs M (2012) Heavy metal remediation technologies in Latvia: possible applications and preliminary case study results. Ecol Chem Eng S 19(4):489–664

    Google Scholar 

  36. RTU VMC (2017) http://www.emc.rtu.lv/projects_lv.htm. Accessed on 01 Aug 2019

  37. Burlakovs J, Ruskulis A (2012) Environmental situation in surroundings of Incukalns goudron ponds and threats to groundwater. In: Proceedings of the 70th Conference of the University of Latvia, Riga, Latvia

    Google Scholar 

  38. Burlakovs J, Vircavs M (2012) Waste dumps in Latvia: former landfilling, consequences and possible re-cultivation. Chem J Moldova 7(1):83–90

    Google Scholar 

  39. Burlakovs J (2012) Dumps in Latvia: preliminary research and remediation. In: SGEM2012 Conference Proceedings, vol 2, p 55–62

    Google Scholar 

  40. Burlakovs J (2008) Groundwater sampling for monitoring purposes: Case studies in Latvia. In: SGEM2008 Conference Proceedings, vol 1, pp 687–690

    Google Scholar 

  41. Krauklis A, Ozola R, Burlakovs J, Rugele K, Kirillov K, Trubaca-Boginska A, Rubenis K, Stepanova V, Klavins M (2017) FeOOH and Mn8O10Cl3 modified zeolites for As(V) removal in aqueous medium. J Chem Technol Biotechnol 92(8):1948–1960

    Article  CAS  Google Scholar 

  42. Ozola R, Krauklis A, Leitietis M, Burlakovs J, Vircava I, Ansone-Bertina L, Bhatnagar A, Klavins M (2019) FeOOH-modified sorbents for arsenic removal from aqueous solutions. Environ Technol Innov 13:364–372

    Article  Google Scholar 

  43. Valujeva K, Burlakovs J, Grinfelde I, Pilecka J, Jani Y, Hogland W (2018) Phytoremediation as tool for prevention of contaminant flow to hydrological systems. Res Rural Dev 24:188–194

    Article  Google Scholar 

  44. Ferguson G, Gleeson T (2012) Vulnerability of coastal aquifers to groundwater use and climate change. Nat Clim Change 2(5):342–345

    Article  Google Scholar 

  45. Dzilna IL (1970) Resources and dynamics of groundwaters in the middle Baltic area. Zinatne, Riga

    Google Scholar 

  46. Semjonovs I (1997) Hydrological background for protection of groundwaters. VARAM, Riga

    Google Scholar 

  47. Levina N, Levins I (2001) Evaluation of Liepaja city centralized water supply sources. State Geological Service, Riga

    Google Scholar 

  48. Seglins M, Levina N (2001) Assessment of Liepaja city centralized water supply sources. State Geological Service, Riga

    Google Scholar 

  49. Geoconsultants (2007) Site reports on hydrogeological investigations at Otaņķi and Aistere. Geoconsultants Ltd., Riga

    Google Scholar 

  50. Water Liepaja (2010) Reports on exploration and monitoring wells of centralized water prospects at Otaņķi and Aistere. Liepaja Water Ltd., Liepaja

    Google Scholar 

  51. Bikse J, Retike I (2018) An approach to delineate groundwater bodies at risk: seawater intrusion in Liepāja (Latvia). In: E3S Web of Conferences, vol 54, p 00003

    Article  CAS  Google Scholar 

  52. Retike I, Bikse J (2018) New data on seawater intrusion in Liepaja (Latvia) and methodology for establishing background levels and threshold values in groundwater body at risk F5. In: E3S Web of Conferences, vol 54, p 00027

    Article  CAS  Google Scholar 

  53. Burlakovs J, Lacis D (2012) The development trends of groundwater horizon surface depression and sea water intrusion impact in Liepaja city. In: SGEM2012 Conference Proceedings, vol 1, pp 297–302

    Google Scholar 

  54. Greenworld (2019) http://greenworld.org.ru/. Accessed on 01 Aug 2019

  55. Burlakovs J, Klavins M, Osinska L, Purmalis O (2013) The impact of humic substances as remediation agents to the speciation forms of metals in soil. APCBEE Procedia 5:192–196

    Article  CAS  Google Scholar 

  56. Valujeva K, Pilecka J, Grinberga L, Grinfelde I, Burlakovs J (2019) Environmental management of remediative and revitalization initiatives in Baltic Sea region. In: SGEM2019 Conference Proceedings, vol 19(5.1), pp 253– 259

    Google Scholar 

  57. Bertina L, Krievans M, Burlakovs J, Lapinskis J (2015) Coastal development of Daugavgriva island, located near the Gulf of Riga. In: Proceedings of the Latvian Academy of Sciences, Section B: Natural, Exact & Applied Sciences, vol 69(6), pp 290–298

    Google Scholar 

  58. Bhatnagar A, Kaczala F, Burlakovs J, Kriipsalu M, Hogland M, Hogland W (2017) Hunting for valuables from landfills and assessing their market opportunities—a case study with Kudjape landfill in Estonia. Waste Manage Res 35(6):627–635

    Article  Google Scholar 

  59. Lombi E, Wenzel WW, Adriano DC (1998) Soil contamination, risk reduction and remediation. Land Contam Reclam 6(4):183–197

    Google Scholar 

  60. Burlakovs J, Purmalis O, Krievans M, Jani Y (2016) Ground-penetrating radar (GPR) geoenvironmental screening in lakes of Latvia: challenges and outcomes. Near Surf Geosci 22P1:14

    Google Scholar 

  61. Burlakovs J, Janovskis R, Stankevica K, Hassan I, Lacis S (2014) Removal of heavy metals from contaminated soils by electrokinetic remediation. Res Rural Dev 2:122–126

    Google Scholar 

  62. Standard ISO 17294-2:2002 Water quality—application of ICP-MS—Part 2: Determination of 62 elements

    Google Scholar 

  63. Standard NEN 6966:2003 Analyses of 30 selected elements—Atomic emission spectrometry with inductively coupled plasma

    Google Scholar 

  64. Standard BS EN 12457-2:2002 Characterization of waste. Leaching. Compliance test for leaching of granular waste materials and sludges

    Google Scholar 

  65. Shi C, Fernandez-Jimenez A (2006) Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. J Hazard Mater B137:1656–1663

    Article  CAS  Google Scholar 

Download references

Acknowldgements

The case study compilation and comprehensive analysis was supported by Baltic Beach Wrack—Conversion of a Nuisance To a Resource and Asset (CONTRA), BAPR “Baltic Phytoremediation” as well as RBR (Reviving Baltic Resilience) Interreg-V-A project, grant No. STHB 02.02.00-22-0092/16 of EU South Baltic Programme 2014–2020. Great thanks to Swedish Institute LASUWAMA project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juris Burlakovs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burlakovs, J. et al. (2020). Environmental Quality of Groundwater in Contaminated Areas—Challenges in Eastern Baltic Region. In: Negm, A., Zelenakova, M., Kubiak-Wójcicka, K. (eds) Water Resources Quality and Management in Baltic Sea Countries. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-39701-2_4

Download citation

Publish with us

Policies and ethics