Skip to main content

Investigate the Performance of 240 GHz Millimeter: Wave Frequency over Fiber with 10 and 20 Gbps

  • Conference paper
  • First Online:
  • 986 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1129))

Abstract

In this work, a new approach is introduced to generate 240 GHz millimeter-wave signals using dual Parallel Mach-Zehnder modulators only. 216 GHz, 240 Ghz, 264 GHz and 288 GHz can be generated by tuning the input frequency of local oscillator to 18 Ghz, 20 GHz, 22 GHz and 24 GHz individually. By properly setting of the MZM biasing point, RF LO frequencies and phases shift, eighths order optical sidebands are generated with OSSR of 36.7 dB. At the photo detector 12 tupled frequencies are obtained with RFSSR of 30.01 dB. Further, the performance of generated 240 GHz is investigated by modulated the generated signals with baseband signal of 10 Gbps and 20 Gbps by using electro Absorption modulator. The max Q factor of different transmission distance is measured and analyzed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Thomas, V.A., El-Hajjar, M., Hanzo, L.: Millimeter-wave radio over fiber optical upconversion techniques relying on link nonlinearity. IEEE Commun. Surv. Tutor. 18(1), 29–53 (2016)

    Article  Google Scholar 

  2. Song, H.J., Nagatsuma, T.: Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011)

    Article  Google Scholar 

  3. Martin, K.: Terahertz Communications: A 2020 Vision, vol. 35, pp. 325–338. Springer, Heidelberg (2007)

    Google Scholar 

  4. Seeds, A.J., Shams, H., Fice, M.J., Renaud, C.C.: TeraHertz photonics for wireless communications. J. Light. Technol. 33(3), 579–587 (2015)

    Article  Google Scholar 

  5. Boulogeorgos, A.A.A., Papasotiriou, E.N., Kokkoniemi, J., Lehtomaeki, J., Alexiou, A., Juntti, M.: Performance evaluation of THz wireless systems operating in 275–400 GHz band. In: IEEE Vehicular Technology Conference, vol. 2018-June, pp. 1–5 (2018)

    Google Scholar 

  6. Federici, J., Moeller, L.: Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 107(11), 111101 (2010)

    Article  Google Scholar 

  7. Beas, J., Castanon, G., Aldaya, I., Aragon-Zavala, A., Campuzano, G.: Millimeter-wave frequency radio over fiber systems: a survey. IEEE Commun. Surv. Tutor. 15(4), 1593–1619 (2013)

    Article  Google Scholar 

  8. Giotas, T.: Optical Generation and Distribution of a Wide-Band Tunable Millimeter-Wave Signal With an Optical External Modulation Technique_and Mach Zehnder_Proof_Pages_27, vol. 53, no. 10, pp. 3090–3097 (2018)

    Google Scholar 

  9. Yu, J., et al.: Optical Millimeter-Wave Generation or Up-Conversion Using, vol. 18, no. 1, pp. 2005–2007 (2006)

    Google Scholar 

  10. Yang, A., Gu, W., Yu, S., Wang, C., Jiang, T.: A frequency quadrupling optical mm-wave generation for hybrid fiber-wireless systems. IEEE J. Sel. Areas Commun. 31(12), 797–803 (2014)

    Google Scholar 

  11. Lin, C.T., Shih, P.T., Chen, J., Xue, W.Q., Peng, P.C., Chi, S.: Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering. IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008)

    Article  Google Scholar 

  12. Mohamed, M., Zhang, X., Hraimel, B., Wu, K.: Frequency sixupler for millimeter-wave over fiber systems. Opt. Express 16(14), 10141 (2008)

    Article  Google Scholar 

  13. Wang, Y., Pei, L., Li, J., Li, Y.: Millimeter-wave signal generation with tunable frequency multiplication factor by employing UFBG-based acousto-optic tunable filter. IEEE Photonics J. 9(1), 1–10 (2017)

    Google Scholar 

  14. Eissa, M.H., Malignaggi, A., Ko, M., Schmalz, K., Borngräber, J., Ulusoy, A.C., Kissinger, D.: A 216–256 GHz fully differential frequency multiplier-by-8 chain with 0 dBm output power. Int. J. Microwave Wirel. Technol. 10(5–6), 562–569 (2018)

    Article  Google Scholar 

  15. Zhu, Z., Zhao, S., Zheng, W., Wang, W., Lin, B.: Filterless frequency 12-tupling optical millimeter-wave generation using two cascaded dual-parallel Mach-Zehnder modulators. Appl. Opt. 54(32), 9432 (2015)

    Article  Google Scholar 

  16. Chen, X., Xia, L., Huang, D.: Optical generation of 12-tupling millimeter-wave signal without optical filtering. J. Opt. Commun. 37(3), 295–299 (2016)

    Article  Google Scholar 

  17. Wang, D., Tang, X., Xi, L., Zhang, X., Fan, Y.: A filterless scheme of generating frequency 16-tupling millimeter-wave based on only two MZMs. Opt. Laser Technol. 116, 7–12 (2019)

    Article  Google Scholar 

  18. Chen, H., Ning, T., Li, J., Pei, L., Zhang, C., Yuan, J.: Study on filterless frequency-tupling millimeter-wave generator with tunable optical carrier to sideband ratio. Opt. Commun. 350, 128–134 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fawziya Al Wahaibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al Wahaibi, F., Al Raweshidy, H. (2020). Investigate the Performance of 240 GHz Millimeter: Wave Frequency over Fiber with 10 and 20 Gbps. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Advances in Information and Communication. FICC 2020. Advances in Intelligent Systems and Computing, vol 1129. Springer, Cham. https://doi.org/10.1007/978-3-030-39445-5_3

Download citation

Publish with us

Policies and ethics