Skip to main content

Collapse Prediction and Safety of Masonry Arches

  • Chapter
  • First Online:
Natural Risk Management and Engineering

Abstract

Masonry structures without mortar or with mortar of low quality are used in several infrastructures, like bridges and retaining walls Unilateral contact plays a crucial role in their stability. Limit analysis and nonexistence of solution are related to the creation of collapse mechanisms. Open source and freely available software can be used for the analysis of such structures, usually with an acceptable for post-disaster, emergency situations. Numerical results related to a recently collapsed masonry bridge demonstrate the usage of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bolzon, G. (2017). Complementarity problems in structural engineering: An overview. Archives of Computational Methods in Engineering, 24(1), 23–36.

    Google Scholar 

  • Caliò, I., et al. (2010). A discrete element for modeling masonry vaults. Advanced Materials Research, 133–134, 447–452.

    Article  Google Scholar 

  • Cascini, L., Gagliardo, R., & Portioli, F. (2018). LiABlock_3D: A software tool for collapse mechanism analysis of historic masonry structures. International Journal of Architectural Heritage, 1–20.

    Google Scholar 

  • Chiozzi, A., Malagu, M., Tralli, A., & Cazzani, A. (2015). ArchNURBS: NURBS-based tool for the structural safety assessment of masonry arches in MATLAB. Journal of Computing in Civil Engineering

    Google Scholar 

  • Demyanov, V. F., Stavroulakis, G. E., Polyakova, L. N., & Panagiotopoulos, P. D. (1996). Quasi differentiability and nonsmooth modelling in mechanics, engineering and economics. Springer/Kluwer Academic.

    Google Scholar 

  • Drdácký, M. F., & Slížková, Z. (2007). Flood and post-flood performance of historic stone arch bridges. In Arch 2007 5th International Conference on Arch Bridges, Madeira, University of Minho, Department of Civil Engineering. Guimarães; proceedings, pp. 164–170.

    Google Scholar 

  • Drosopoulos, G. A., Stavroulakis, G. E., & Massalas, C. V. (2006). Limit analysis of a single span masonry bridge with unilateral frictional contact interfaces. Engineering Structures, 28, 1864–1873.

    Article  Google Scholar 

  • Drosopoulos, G. A., Stavroulakis, G. E., & Massalas, C. V. (2008). Influence of the geometry and the abutments movement on the collapse of stone arch bridges. Construction and Building Materials, 22(3), 200–210.

    Article  Google Scholar 

  • Ferris, M. C., & Tin-Loi, F. (2001). Limit analysis of frictional block assemblies as a mathematical program with complementarity constraints. International Journal of Mechanical Sciences, 43, 209–224.

    Article  Google Scholar 

  • Fukumoto, Y., et al. (2014). The effects of block shape on the seismic behavior of dry-stone masonry retaining walls: A numerical investigation by discrete element modeling. Soils and Foundations, 54(6), 1117–1126.

    Article  Google Scholar 

  • Galassi, S., & Tempesta, G. (2019). The Matlab code of the method based on the full range factor for assessing the safety of masonry arches. MethodsX, 6, 1521–1542. https://doi.org/10.1016/j.mex.2019.05.033.

    Article  Google Scholar 

  • Gilbert, M., & Melbourne, C. (1994). Rigid-block analysis of masonry structures. The Structural Engineer, 72(21), 356–361.

    Google Scholar 

  • Gilbert, M. (2001). RING: A 2D rigid block analysis program for masonry arch bridges. In Proceedings of 3rd International Arch Bridges Conference. Paris, pp. 109–118.

    Google Scholar 

  • Gilbert, M., Casapulla, C., & Ahmed, H. M. (2006). Limit analysis of masonry block structures with non-associative frictional joints using linear programming. Computers and Structures, 84(13–14), 873–887.

    Article  Google Scholar 

  • Heyman, J. (1982). The masonry arch. Chichester: Ellis Horwood.

    Google Scholar 

  • Hulet, K. M., Smith, C. C., & Gilbert, M. (2006). Load-carrying capacity of flooded masonry arch bridges. Proceedings of the Institution of Civil Engineers, Bridge Engineering, 159(BE3), 97–103.

    Google Scholar 

  • Leftheris, L., Sapounaki, A., Stavroulaki, M. E., & Stavroulakis, G. E. (2006). Computational mechanics for heritage structures. Southampton, Boston: WIT—Computational Mechanics Publications.

    Google Scholar 

  • Liu, S. G., Li, Z. J., Zhang, H., et al. (2018). A 3-D DDA damage analysis of brick masonry buildings under the impact of boulders in mountainous areas. Journal of Mountain Science, 15(3), 657–671. https://doi.org/10.1007/s11629-017-4453-5.

    Article  Google Scholar 

  • Livesley, R. K. (1978). Limit analysis of structures formed from rigid blocks. International Journal of Numerical Methods in Engineering, 12, 1853–1871.

    Article  Google Scholar 

  • Melbourne, C., & Gilbert, M. (1995). The behaviour of multi-ring brickwork arch bridges. The Structural Engineer, 73(3), 39–47.

    Google Scholar 

  • Mistakidis, E. S., & Stavroulakis, G. E. (1998). Nonconvex optimization in mechanics. Smooth and nonsmooth algorithms, heuristics and engineering applications. Springer/Kluwer Academic.

    Google Scholar 

  • Orduña, A., & Lourenço, P. B. (2005). Three-dimensional limit analysis of rigid blocks assemblages. Part II: Load-path following solution procedure and validation. International Journal of Solids and Structures, 42(18–19), 5161–5180.

    Google Scholar 

  • Quezada, J.-C., et al. (2019). 3D failure of a scale-down dry stone retaining wall: A DEM modeling. Computers and Structures, 220, 14–31.

    Article  Google Scholar 

  • Portioli, F., Cascini, L., Casapulla, C., & D’Aniello, M. (2013). Limit analysis of masonry walls by rigid block modelling with cracking units and cohesive joints using linear programming. Engineering Structures, 57, 232–247.

    Article  Google Scholar 

  • Riveiro, B., Conde, B., Drosopoulos, G. A., Stavroulakis, G. E., & Stavroulaki, M. E. (2016). Fully automatic approach for the diagnosis of masonry arches from laser scanning data and inverse finite element analysis. In Structural Analysis of Historical Constructions: Anamnesis, Diagnosis, Therapy, Controls: Proceedings of the 10th International Conference on Structural Analysis of Historical Constructions. SAHC, Leuven, Belgium: CRC Press, p. 133, pp. 13–15

    Google Scholar 

  • Stavroulakis, G. E., Panagiotopoulos, P. D., & Al-Fahed, A. M. (1991). On the rigid body displacements and rotations in unilateral contact problems and applications. Computers and Structures, 40, 599–614.

    Article  Google Scholar 

  • Stavroulaki, M. E., Riveiro, B., Drosopoulos, G. A., Solla, M., Koutsianitis, P., & Stavroulakis, G. E. (2016). Modelling and strength evaluation of masonry bridges using terrestrial photogrammetry and finite elements. Advances in Engineering Software, 101, 136–148.

    Article  Google Scholar 

  • Tralli, A., Alessandri, C., & Milani, G. (2014). Computational methods for masonry vaults: A review of recent results. The Open Civil Engineering Journal, 8, 272–287.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios E. Stavroulakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stavroulakis, G.E., Menemenis, I., Stavroulaki, M.E., Drosopoulos, G.A. (2020). Collapse Prediction and Safety of Masonry Arches. In: Gocić, M., Aronica, G., Stavroulakis, G., Trajković, S. (eds) Natural Risk Management and Engineering. Springer Tracts in Civil Engineering . Springer, Cham. https://doi.org/10.1007/978-3-030-39391-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39391-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39390-8

  • Online ISBN: 978-3-030-39391-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics