Skip to main content

Pyrolytic Products from Oil Palm Biomass and Its Potential Applications

  • Chapter
  • First Online:
Book cover Valorisation of Agro-industrial Residues – Volume II: Non-Biological Approaches

Abstract

Lignocellulosic biomass has been recognized as a sustainable feedstock for the production of renewable energy and bio-products. Various technologies including biochemical and thermochemical have been developed and applied for the conversion of the oil palm biomass. Thermochemical processes (i.e., combustion, pyrolysis, gasification, and liquefaction) could be the more economically feasible option to convert the lignocellulosic biomass quickly with lower cost compared to biochemical process due to high recalcitrant level of lignocellulosic biomass toward microbial degradation. Pyrolysis is one of the predominant technologies for lignocellulosic biomass conversion into valuable end products. This chapter provides an overview on the palm oil industry, oil palm biomass and current management scenario, pyrolysis process, parameters that influence the pyrolysis process, and the effect of these parameters on the pyrolysis product yield. The potential applications of pyrolytic products from oil palm biomass were also comprehensively addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abas FZ, Zakaria ZA, Ani FN (2018) Antimicrobial properties of optimized microwave-assisted pyroligneous acid from oil palm fiber. J Appl Pharm Sci 8(07):065–071

    Article  CAS  Google Scholar 

  • Abnisa F, Daud WW, Husin WN, Sahu JN (2011) Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. Biomass Bioenergy 35(5):1863–1872

    Article  CAS  Google Scholar 

  • Abnisa F, Arami-Niya A, Daud WW, Sahu JN (2013a) Characterization of bio-oil and bio-char from pyrolysis of palm oil wastes. Bioenergy Res 6(2):830–840

    Article  CAS  Google Scholar 

  • Abnisa F, Arami-Niya A, Daud WW, Sahu JN, Noor IM (2013b) Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy Convers Manag 76:1073–82.B

    Article  CAS  Google Scholar 

  • Aditiya HB, Chong WT, Mahlia TM, Sebayang AH, Berawi MA, Nur H (2016) Second generation bioethanol potential from selected Malaysia’s biodiversity biomasses: a review. Waste Manag 47:46–61

    Article  CAS  PubMed  Google Scholar 

  • Alias NB, Ibrahim N, Hamid MK, Hasbullah H, Ali RR, Kasmani RM (2015) Investigation of oil palm wastes’ pyrolysis by thermo-gravimetric analyzer for potential biofuel production. Energy Procedia 75:78–83

    Article  CAS  Google Scholar 

  • Ariffin SJ, Yahayu M, El-Enshasy H, Malek RA, Aziz AA, Hashim NM et al (2017) Optimization of pyroligneous acid production from palm kernel shell and its potential antibacterial and antibiofilm activities. Indian J Exp Biol 55:427–435

    CAS  Google Scholar 

  • Aziz AA, Das K, Husin M, Mokhtar A (2002) Effects of physical and chemical pre-treatments on xylose and glucose production from oil palm press fibre. J Oil Palm Res 14(2):10–17

    Google Scholar 

  • Baharuddin AS, Wakisaka M, Shirai Y, Abd-Aziz S, Abdul Rahman NA, Hassan MA (2009) Co-composting of empty fruit bunches and partially treated palm oil mill effluents in pilot scale. Int J Agric Res 4(2):69–78

    Article  CAS  Google Scholar 

  • Balat M (2006) Biomass energy and biochemical conversion processing for fuels and chemicals. Energy Sources, Part A 28(6):517–525

    Article  CAS  Google Scholar 

  • Beis SH, Onay Ö, Koçkar ÖM (2002) Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions. Renew Energy 26(1):21–32

    Article  CAS  Google Scholar 

  • Bhatia L, Johri S, Ahmad R (2012) An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express 2(1):65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi GG, Oh SJ, Lee SJ, Kim JS (2015) Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells. Bioresour Technol 178:99–107

    Article  CAS  PubMed  Google Scholar 

  • Chow LW, Tio SA, Teoh JY, Lim CG, Chong YY, Thangalazhy-Gopakumar S (2018) Sludge as a relinquishing catalyst in co-pyrolysis with palm empty fruit bunch fiber. J Anal Appl Pyrolysis 132:56–64

    Article  CAS  Google Scholar 

  • Corley RH, Tinker PB (2008) The oil palm. Wiley, Hoboken, NJ

    Google Scholar 

  • Daud WM, Ali WS, Sulaiman MZ (2000) The effects of carbonization temperature on pore development in palm-shell-based activated carbon. Carbon 38(14):1925–1932

    Article  CAS  Google Scholar 

  • Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis 72(2):243–248

    Article  CAS  Google Scholar 

  • Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energy Sources 24(5):471–482

    Article  CAS  Google Scholar 

  • Dhyani V, Bhaskar T (2018) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 129:695–716

    Article  CAS  Google Scholar 

  • Dompok YT (2013) Deepening Malaysia’s palm oil advantage. In: Economic Transformation Programme: a roadmap for Malaysia (1 Malaysia)

    Google Scholar 

  • Gan PY, Li ZD (2014) Econometric study on Malaysia’s palm oil position in the world market to 2035. Renew Sust Energ Rev 39:740–747

    Article  Google Scholar 

  • Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sust Energ Rev 12(2):504–517

    Article  CAS  Google Scholar 

  • Guangul FM, Sulaiman SA, Ramli A (2012) Gasifier selection, design and gasification of oil palm fronds with preheated and unheated gasifying air. Bioresour Technol 126:224–232

    Article  CAS  PubMed  Google Scholar 

  • Hooi KK, Alimuddin Z, Ong LK (2009) Laboratory-scale pyrolysis of oil palm pressed fruit fibres. J Oil Palm Res 21:577–587

    CAS  Google Scholar 

  • Husain Z, Zainac Z, Abdullah Z (2002) Briquetting of palm fibre and shell from the processing of palm nuts to palm oil. Biomass Bioenergy 22(6):505–509

    Article  CAS  Google Scholar 

  • Idris SS, Rahman NA, Ismail K (2012) Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresour Technol 123:581–591

    Article  CAS  PubMed  Google Scholar 

  • Kabir G, Din AM, Hameed BH (2017) Pyrolysis of oil palm mesocarp fiber and palm frond in a slow-heating fixed-bed reactor: a comparative study. Bioresour Technol 241:563–572

    Article  CAS  PubMed  Google Scholar 

  • Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sust Energ Rev 57:1126–1140

    Article  CAS  Google Scholar 

  • Karaosmanoğlu F, Tetik E, Göllü E (1999) Biofuel production using slow pyrolysis of the straw and stalk of the rapeseed plant. Fuel Process Technol 59(1):1–2

    Article  Google Scholar 

  • Kelly-Yong TL, Lee KT, Mohamed AR, Bhatia S (2007) Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy 35(11):5692–5701

    Article  Google Scholar 

  • Khor KH, Lim KO, Zainal ZA (2009) Characterization of bio-oil: a by-product from slow pyrolysis of oil palm empty fruit bunches. Am J Appl Sci 6(9):1647–1652

    Article  CAS  Google Scholar 

  • Kolade OO, Coker AO, Sridhar MK, Adeoye GO (2006) Palm kernel waste management through composting and crop production. J Environ Health Res 5(2):81

    Google Scholar 

  • Kong SH, Lam SS, Yek PN, Liew RK, Ma NL, Osman MS et al (2019) Self-purging microwave pyrolysis: an innovative approach to convert oil palm shell into carbon-rich biochar for methylene blue adsorption. J Chem Technol Biotechnol 94(5):1397–1405

    Article  CAS  Google Scholar 

  • Kristiani A, Abimanyu H, Setiawan SH, Sudiyarmanto, Aulia F (2013) Effect of pretreatment process by using diluted acid to characteristic of oil palm’s frond. Energy Procedia 32:183–189

    Google Scholar 

  • Lee XJ, Lee LY, Hiew BY, Gan S, Thangalazhy-Gopakumar S, Ng HK (2017) Multistage optimizations of slow pyrolysis synthesis of biochar from palm oil sludge for adsorption of lead. Bioresour Technol 245:944–953

    Article  CAS  PubMed  Google Scholar 

  • Liew RK, Nam WL, Chong MY, Phang XY, Su MH, Yek PN et al (2018) Oil palm waste: an abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications. Process Saf Environ Prot 115:57–69

    Article  CAS  Google Scholar 

  • Loh SK (2017) The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Convers Manag 141:285–298

    Article  CAS  Google Scholar 

  • Ma X, Wei Q, Zhang S, Shi L, Zhao Z (2011) Isolation and bioactivities of organic acids and phenols from walnut shell pyroligneous acid. J Anal Appl Pyrolysis 91(2):338–343

    Article  CAS  Google Scholar 

  • Ma C, Song K, Yu J, Yang L, Zhao C, Wang W et al (2013) Pyrolysis process and antioxidant activity of pyroligneous acid from Rosmarinus officinalis leaves. J Anal Appl Pyrolysis 104:38–47

    Article  CAS  Google Scholar 

  • Mahmud KN (2017) Optimization of total phenolic contents in pyroligneous acid from oil palm kernel shell and its bioactivities. Ph.D thesis, Universiti Teknologi Malaysia

    Google Scholar 

  • Mahmud KN, Yahayu MA, Sarip SH, Rizan NH, Min CB, Mustafa NF et al (2016) Evaluation on efficiency of pyroligneous acid from palm kernel shell as antifungal and solid pineapple biomass as antibacterial and plant growth promoter. Sains Malaysiana 45(10):1423–1434

    CAS  Google Scholar 

  • Malaysian Palm Oil Board (2018a). Oil palm planted area as at December 2018 (hectares). http://bepi.mpob.gov.my/images/area/2018/Area_summary.pdf. Accessed 26 March 2019

  • Malaysian Palm Oil Board (2018b). Production of crude palm oil for the month of December 2018 July–December 2017 & 2018 (tonnes). http://bepi.mpob.gov.my/index.php/en/statistics/production/186-production-2018/850-production-of-crude-oil-palm-2018.html. Accessed 26 March 2019

  • Malaysian Palm Oil Board (2018c). Monthly export of oil palm products – 2018. http://bepi.mpob.gov.my/index.php/en/statistics/export/192-export-2018/869-monthly-export-of-oil-palm-products-2018.html. Accessed 27 March 2019

  • Malaysian Palm Oil Board (2019). Number and capacities of palm oil sectors in operation as at February 2019 (tonnes/year). http://bepi.mpob.gov.my/index.php/en/statistics/sectoral-status/370-sectoral-status-2019/917-number-a-capacities-of-palm-oil-sectors-2019.html. Accessed 27 March 2019

  • Mekhilef S, Saidur R, Safari A, Mustaffa WE (2011) Biomass energy in Malaysia: current state and prospects. Renew Sust Energ Rev 15(7):3360–3370

    Article  Google Scholar 

  • Mimmo T, Panzacchi P, Baratieri M, Davies CA, Tonon G (2014) Effect of pyrolysis temperature on miscanthus (Miscanthus× giganteus) biochar physical, chemical and functional properties. Biomass Bioenergy 62:149–157

    Article  CAS  Google Scholar 

  • Mu D, Seager T, Rao PS, Zhao F (2010) Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion. Environ Manag 46(4):565–578

    Article  Google Scholar 

  • Mullen CA, Boateng AA, Goldberg NM, Lima IM, Laird DA, Hicks KB (2010) Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy 34(1):67–74

    Article  CAS  Google Scholar 

  • Nam WL, Phang XY, Su MH, Liew RK, zainalMa NL, Rosli MH et al (2018) Production of bio-fertilizer from microwave vacuum pyrolysis of palm kernel shell for cultivation of Oyster mushroom (Pleurotus ostreatus). Sci Total Environ 624:9–16

    Article  CAS  PubMed  Google Scholar 

  • Nasrin AB, Ma AN, Choo YM, Mohamad S, Rohaya MH, Azali A et al (2008) Oil palm biomass as potential substitution raw materials for commercial biomass briquettes production. Am J Appl Sci 5(3):179–183

    Article  CAS  Google Scholar 

  • Ng WP, Lam HL, Ng FY, Kamal M, Lim JH (2012) Waste-to-wealth: green potential from palm biomass in Malaysia. J Clean Prod 34:57–65

    Article  Google Scholar 

  • Onay O (2007) Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process Technol 88(5):523–531

    Article  CAS  Google Scholar 

  • Oramahi HA, Yoshimura T, Diba F, Setyawati D (2018) Antifungal and antitermitic activities of wood vinegar from oil palm trunk. J Wood Sci 64(3):311–317

    Article  CAS  Google Scholar 

  • Paethanom A, Yoshikawa K (2012) Influence of pyrolysis temperature on rice husk char characteristics and its tar adsorption capability. Energies 5(12):4941–4951

    Article  CAS  Google Scholar 

  • Samiran NA, Jaafar MN, Chong CT, Jo-Han N (2015) A review of palm oil biomass as a feedstock for syngas fuel technology. Jurnal Teknologi 72(5):13–18

    Article  Google Scholar 

  • Singh P, Sulaiman O, Hashim R, Peng LC, Singh RP (2013) Using biomass residues from oil palm industry as a raw material for pulp and paper industry: potential benefits and threat to the environment. Environ Dev Sustain 15(2):367–383

    Article  Google Scholar 

  • Sulaiman O, Salim N, Nordin NA, Hashim R, Ibrahim M, Sato M (2012) The potential of oil palm trunk biomass as an alternative source for compressed wood. Bioresources 7(2):2688–2706

    Article  CAS  Google Scholar 

  • Sumathi S, Chai SP, Mohamed AR (2008) Utilization of oil palm as a source of renewable energy in Malaysia. Renew Sust Energ Rev 12(9):2404–2421

    Article  CAS  Google Scholar 

  • Wafti NS, Lau HL, Loh SK, Aziz AA, Ab Rahman Z, May CY (2017) Activated carbon from oil palm biomass as potential adsorbent for palm oil mill effluent treatment. J Oil Palm Res 29(2):278–290

    Article  Google Scholar 

  • Wei Q, Ma X, Dong J (2010) Preparation, chemical constituents and antimicrobial activity of pyroligneous acids from walnut tree branches. J Anal Appl Pyrolysis 87(1):24–28. a

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Liang DT, Zheng C (2006) Mechanism of palm oil waste pyrolysis in a packed bed. Energy Fuels 20(3):1321–1328

    Article  CAS  Google Scholar 

  • Yek PN, Liew RK, Osman MS, Lee CL, Chuah JH, Park YK et al (2019) Microwave steam activation, an innovative pyrolysis approach to convert waste palm shell into highly microporous activated carbon. J Environ Manag 236:245–253

    Article  CAS  Google Scholar 

  • Zainal NH, Aziz AA, Idris J, Jalani NF, Mamat R, Ibrahim MF, Hassan MA, Abd-Aziz S (2018) Reduction of POME final discharge residual using activated bioadsorbent from oil palm kernel shell. J Clean Prod 182:830–837

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Universiti Teknologi Malaysia (UTM) for the GUP grant (20H41) and the Ministry of Education, Malaysia, for the FRGS grant (4F994) and the MyPhD scholarship to Khoirun Nisa Mahmud.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainul Akmar Zakaria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmud, K.N., Zakaria, Z.A. (2020). Pyrolytic Products from Oil Palm Biomass and Its Potential Applications. In: Zakaria, Z., Aguilar, C., Kusumaningtyas, R., Binod, P. (eds) Valorisation of Agro-industrial Residues – Volume II: Non-Biological Approaches. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-39208-6_11

Download citation

Publish with us

Policies and ethics