Skip to main content

Circular Economy and Agro-Industrial Wastewater: Potential of Microalgae in Bioremediation Processes

  • Chapter
  • First Online:
Valorisation of Agro-industrial Residues – Volume I: Biological Approaches

Abstract

Agro-industrial production generates large volumes of effluents with a high content of solids, nutrients, organic matter, and microorganisms. These effluents can negatively modify natural environments that receive them by surface runoff or infiltration through the soil, with possible damage to the population’s health. The objective of the circular economy is to maintain—as long as possible—the materials, products, and resources used in the production system to diminish, in this way, contaminating wastes. The “biologization” of industrial processes using the purification capacity of microalgae to decontaminate wastewaters has emerged in recent years. It offers two benefits, the production of biomass for different uses and the production of cleaner effluents. After microalgal treatments, ecotoxicity tests are used to assess the effectiveness of decontamination processes. In addition, bioassays indicate how long it is necessary to continue the decontamination process, i.e., when the concentration with no toxic effects has been reached, thus reducing unnecessary costs.

In this chapter, we will discuss (1) the use of microalgae for the treatment of agro-industrial wastewater derived from dairy, swine, and agrochemicals (fertilizers, pesticides) production. (2) The relevance of a cleaner remediation technology for water contaminated with glyphosate: the advanced oxidation process (AOP), using the microalgae Chlorella vulgaris as a test organism. (3) The importance of monitoring environmental pollution in freshwater aquatic ecosystems through ecotoxicology tests using nontarget species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A UN-Water Analytical Brief (2015) http://www.unwater.org/

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albeliovich A (2004) Water purification: algae in wastewater oxidation ponds. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Oxford, pp 430–438

    Google Scholar 

  • Andrade CER, Vera AL, Cárdenas CH, Morales ED (2009) Biomass production of microalga Scenedesmus sp. with wastewater from fishery. Rev Téc Ing Univ Zulia 32(2):126–134

    Google Scholar 

  • Araújo SC, Garcia VMT (2005) Growth and biochemical composition of the diatom Chaetoceros cf wighamii brightwell under different temperatures, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture 246:405–412

    Article  CAS  Google Scholar 

  • Baglieri A, Sidella S, Barone V, Fragalà F, Silkina A, Nègre M, Gennari M (2016) Cultivating Chlorella vulgaris and Scenedesmus quadricauda microalgae to degrade inorganic compounds and pesticides in water. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-016-6996-3

    Article  CAS  PubMed  Google Scholar 

  • Bayón B, Berti IR, Gagneten AM, Castro GR (2018) Biopolymers from wastes to high-value products in biomedicine. In: Singhania R, Agarwal R, Kumar R, Sukumaran R (eds) Waste to wealth. Energy, environment, and sustainability. Springer, Singapore

    Google Scholar 

  • Benavides J, Rito-Palomares M (2008) Aplicación genérica de sistemas de dos fases acuosas Polientilenglicol – Sal para el desarrollo de procesos de recuperación primaria de compuestos biológicos. Rev Mex Ing Quím 7:99–111

    CAS  Google Scholar 

  • Benbrook CM (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28(1):3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cervantes FJ, Saldívar-Cabrales J, Yescas JF (2007) Estrategias para el aprovechamiento de desechos porcinos en la agricultura. Rev Latinoam Recursos Nat 3(1):3–12

    Google Scholar 

  • Cheah WY, Pau LS, Joon CJ, Chang JS, Ling TC (2018) Microalgae cultivation in palm oil mill effluent (POME) for lipid production and pollutants removal. Energy Convers Manag 174:430–438

    Article  CAS  Google Scholar 

  • Cho HU, MoKim Y, Park JM (2017) Enhanced microalgal biomass and lipid production from a consortium of indigenous microalgae and bacteria present in municipal wastewater under gradually mixotrophic culture conditions. Bioresour Technol 228:290–297

    Article  CAS  PubMed  Google Scholar 

  • Chong AMY, Wong YS, Tam NFY (2000) Performance of diferent microalgal species in removing nickel and zinc from industrial wastewater. Chemosphere 41:251–257

    Article  CAS  PubMed  Google Scholar 

  • Collins Odjadjare E, Mutanda T, Chen YF, Olaniran AO (2018) Evaluation of pre-chlorinated wastewater effluent for microalgal cultivation and biodiesel production. Water 10(8):977. https://doi.org/10.3390/w10080977

    Article  CAS  Google Scholar 

  • de-Bashan LE, Hernandez JP, Bashan Y (2015) Interaction of Azospirillum spp. with microalgae: a basic eukaryotic–prokaryotic model and its biotechnological applications. In: Cassán F, Okon Y, Creus C (eds) Handbook for Azospirillum. Springer, Cham

    Google Scholar 

  • De Grandis MJ, Visintini MG (2015) Manejo del efluente en el tambo. Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Corodoba

    Google Scholar 

  • Diez M (2012) Efluentes de tambo, mucho más que residuos. Producir XXI Bs As 20(251):30–36

    Google Scholar 

  • Dominic VJ, Murali S, Nisha MC (2009) Phycoremediation efficiency of three algae Chlorella vulgaris, Synechocystis salina and Gloeocapsa gelatinosa. Acad Rev 16(1–2):138–146

    Google Scholar 

  • Doušková I, Kaštánek F, Maléterová Y, Kaštánek P, Doucha J, Zachleder V (2010) Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: biogas-cogeneration-microalgae-products. Energy Convers Manag 51:606–611

    Article  CAS  Google Scholar 

  • Fernández-Alba A, Hernando D, Agüera A, Cáceres J, Malato S (2002) Toxicity assays: a way for evaluating AOPs efficiency. Water Res 36:4255–4262

    Article  PubMed  Google Scholar 

  • González-López CV, Acién FG, Fernández-Sevilla JM, Molina E (2011) Uso de microalgas como alternativa a lastecnologías disponibles de mitigación de emisiones antropogénicas de CO2. Rev Latinoam Biotecnol Ambient Algal 2(2):93–106

    Google Scholar 

  • Hanumantha Rao P, Ranjith Kumar R, Raghavan B, Subramanian VV, Sivasubramanian V (2011) Application of phycoremediation technology in the treatment of wastewater from a leather processing chemical manufacturing facility. Water SA 37:7–14

    Google Scholar 

  • Herrero MA, Gil SB (2008) Consideraciones ambientales de la intensificación en la producción animal. Ecol Austral 18(3):273–289

    Google Scholar 

  • Hussein MH, Abdullah AM, Badr NL, Din L, Mishaqa ES (2017) Biosorption potential of the microchlorophyte Chlorella vulgaris for some pesticides. J Fertil Pestic 8:1. https://doi.org/10.4172/2471-2728.1000177

    Article  Google Scholar 

  • Iannacone J, Gutierrez A (1999) Ecotoxicidad de los Agroquímicos Lindano y Clorpirifos sobre el nematodo Panagrellus, la microalga Chlorella y el ensayo con Allium. Agric Téc 59:85–95

    Google Scholar 

  • Infante C, Angulo E, Zárate A, Florez JZ, Barrios F, Zapata C (2012) Propagación de la microalga Chlorella sp. en cultivo por lote: cinética del crecimiento celular. Av Cien Ing 3(2):159–164

    Google Scholar 

  • Jayakumar S, Mashitah M, Yusoff MH, Ab Rahim G, Pragas M, Govindan N (2017) The prospect of microalgal biodiesel using agro-industrial and industrial wastes in Malaysia. Renew Sust Energ Rev 72:33–47

    Article  CAS  Google Scholar 

  • Johnstone C, Day JD, Staines E, Benson EE (2006) An in vitro oxidative stress test for determining pollutant tolerance in algae. Ecol Indic 6:770–779

    Article  Google Scholar 

  • Junges CM, Vidal EE, Attademo AM, Mariani M, Cardell L, Negro AC, Cassano A, Peltzer P, Lajmanovich R, Zalazar CS (2013) Effectiveness evaluation of glyphosate oxidation employing the H2O2/ UVC process: toxicity assays with Vibrio fischeri and Rhinella arenarum tadpoles. J Environ Sci Health Bull Am Meteorol Soc 48:163–170

    Article  CAS  Google Scholar 

  • Kim MK, Park JW, Park CS, Kim SJ, Jeune KH, Chang MU, Acreman J (2007) Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Bioresour Technol 98(11):2220–2228

    Article  CAS  PubMed  Google Scholar 

  • Komolafe O, Velasquez SB, Monje-Ramirez I, Nogueza IY, Harvey AP, Ledesma MTO (2014) Biodiesel production from indigenous microalgae grown in wastewater. Bioresour Technol 154:297–304

    Article  CAS  PubMed  Google Scholar 

  • Koutra E, Economou CN, Tsafrakidou P, Kornaros M (2018) Bio-based products from microalgae cultivated in digestates. Trends Biotechnol 36(8):819–833

    Article  CAS  PubMed  Google Scholar 

  • Kraaijenhagen C, van Oppen C, Bocken N (2016) Circular business: collaborate and circulate. Editor Chris Bernasco. Edición 4. ISBN 908249020X, 9789082490206. https://kenniskaarten.hetgroenebrein.nl/en/knowledge-map-circular-economy/what-is-the-definition-a-circular-economy/

  • Lee YK, Ding SY, Hoe CH, Low CS (1996) Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. J Appl Phycol 8:163

    Article  Google Scholar 

  • León C, Chaves D (2010) Tratamiento de residual vacuno utilizando microalgas, la lenteja de agua Lemna aequinoctiales y un humedal subsuperficial en Costa Rica. Rev Latinoam Biotecnol Ambient Algal 1(2):155–177

    Google Scholar 

  • Lipok J, Owsiak T, Młynarz P, Forlani G, Kafarski P (2007) Phosphorus NMR as a tool to study mineralization of organophosphonates—the ability of Spirulinas sp. to degrade glyphosate. Enzym Microb Technol 41:286–291

    Article  CAS  Google Scholar 

  • Lipok J, Wieczorek D, Jewginski M, Kafarski P (2009) Prospects of in vivo 31P NMR method in glyphosate degradation studies in whole cell system. Enzym Microb Technol 44:11–16

    Article  CAS  Google Scholar 

  • Lourenço SO (2006) Cultivo de Microalgas Marinhas: Princípios e Aplicações. Rima, São Carlos, p 606

    Google Scholar 

  • Lourenço SO, Marquez UML, Mancini-Filho J, Barbarino E, Aidar E (1997) Changes in biochemical profile of Tetraselmis gracilis I comparision of two culture media. Aquaculture 148:153–158

    Article  Google Scholar 

  • Ma X, Zheng H, Addy M, Anderson E, Liu Y, Chen P, Ruan R (2016) Cultivation of in wastewater with waste glycerol: strategies for improving nutrients removal and enhancing lipid production. Bioresour Technol 207:252–261

    Article  CAS  PubMed  Google Scholar 

  • Maity JP, Bundschuh J, Chen CY, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives: a mini review. Energy 78:104–113

    Article  CAS  Google Scholar 

  • Manassero A, Passalia C, Negro AC, Cassano AE, Zalazar CS (2010) Glyphosate degradation in water employing the H2O2/UV process. Water Res 44:3875–3882

    Article  CAS  PubMed  Google Scholar 

  • Marchello AE, Lombardi AT, Dellamano-Oliveira MJ, Clovis WO (2015) Microalgae population dynamics in photobioreactors with secondary sewage effluent as culture medium. Braz J Microbiol 46(1):75–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massoud AH, Derbalah AS, Belal E-SB (2008) Microbial detoxification of metalaxyl in aquatic system. J Environ Sci 20:262–267

    Article  CAS  Google Scholar 

  • Megharaj M, Madhavi DR, Sreenivasulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53:292–297

    Article  CAS  PubMed  Google Scholar 

  • Mehta SK, Gaur JP (2001) Concurrent sorption of Ni2+ and Cu2+ by Chlorella vulgaris from a binary metal solution. Appl Microbiol Biotechnol 55:379–382

    Article  CAS  PubMed  Google Scholar 

  • Mendez-Suaza L, Albarracin I, Cravero M, Salomón R (2011) Crecimiento de Scenedesmus quadricauda en efluentes cloacales de la ciudad de Trelew, Chubut, Argentina. Rev Cuba Invest Pesq 28(1):36–41

    Google Scholar 

  • Miao XL, Wu QY (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93

    Article  CAS  PubMed  Google Scholar 

  • Miao M, Yao X, Shu L, Yan Y, Wang Z, Li N, Cui X, Lin Y, Kong Q (2016) Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with synthetic domestic wastewater. Int Biodeterior Biodegradation 113:120–125

    Article  CAS  Google Scholar 

  • Milhazes-Cunha H, Otero A (2017) Valorisation of aquaculture effluents with microalgae: the integrated multi-trophic aquaculture concept. Algal Res 24(Part B):416–424

    Article  Google Scholar 

  • Morales-Amaral M, Gómez-Serrano C, Acién FG (2015) Outdoor production of Scenedesmus sp. in thin-layer and raceway reactors using centrate from anaerobic digestion as the sole nutrient source. Algal Res 12:99–108

    Article  Google Scholar 

  • Oswald WJ (1988) Microalgae and wastewater treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 357–394

    Google Scholar 

  • Park JR, Craggs Shilton A (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    Article  CAS  PubMed  Google Scholar 

  • Plata V, Kafarov V, Nelson N (2009) Desarrollo de una metodología de transesterificación de aceite en la cadena de producción de biodiesel a partir de microalgas. Prospect 7:35–4.1

    Google Scholar 

  • Prajapati SK, Kaushik P, Malik A, Vijay VK (2013) Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnol Adv 31:1408–1425

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshani I, Sahu D, Rath B (2011) Microalgal bioremediation: current practices and perspectives. J Biochem Technol 3(3):299–304

    CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648

    Article  CAS  PubMed  Google Scholar 

  • Quevado OC, Morales VS, Acosta CA (2008) Scenedesmus sp. growth in diferent culture mediums for microalgal protein production. Vitae 15:25–31

    Google Scholar 

  • Rachlin JW, Grosso A (1991) The effects of pH on the growth of Chlorella vulgaris and its interactions with cadmium toxicity. Arch Environ Contam Toxicol 20:505–508

    Article  CAS  PubMed  Google Scholar 

  • Rawat I, Ranjith-Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Regaldo L (2013) Efecto de metales pesados y plaguicidas sobre organismos planctónicos de diferente nivel trófico y eficacia de acumulación por microalgas. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe

    Google Scholar 

  • Renaud SM, Thinh L, Parry DL (1999) The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170(2):147–159

    Article  CAS  Google Scholar 

  • Reno U (2017) Contaminación acuática por glifosato: efecto sobre especies nativas y eficiencia de los procesos de remoción. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe

    Google Scholar 

  • Reno U, Gutierrez MF, Longo M, Vidal E, Regaldo L, Negro A, Mariani M, Zalazar C, Gagneten AM (2015) Microcrustaceans: biological models to evaluate a remediation process of glyphosate-based formulations. Water Air Soil Pollut 226:349. https://doi.org/10.1007/s11270-015-2616-y

    Article  CAS  Google Scholar 

  • Reno U, Regaldo L, Vidal E, Mariani M, Zalazar C, Gagneten AM (2016) Water polluted with glyphosate formulations: effectiveness of a decontamination process using Chlorella vulgaris growing as bioindicator. J Appl Phycol 28(4):2279–2286

    Article  CAS  Google Scholar 

  • Reno U, Regaldo L, Romero N, Gervasio S, Gagneten AM (2018) Chlorella vulgaris as a biological matrix for dairy effluent remediation. J Algal Biomass Utln 9(4):52–60

    Google Scholar 

  • Rizzo L (2011) Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Res 45(15):4311–4340

    Article  CAS  PubMed  Google Scholar 

  • Rodrıguez MC, Barsant L, Passareli V, Evangelista V, Conforti C, Gualtieri P (2007) Effects of chromium on photosynthetic and photoreceptive apparatus of the alga Chlamydomonas reinhardtii. Environ Res 105:234–239

    Article  PubMed  CAS  Google Scholar 

  • Salman JM, Abdul-Adel A (2015) Potential use of cyanophyta species Oscillatoria limnetica in bioremediation of organophosphorus herbicide glyphosate. Mesop Environ J 1(4):15–26

    Google Scholar 

  • Salomon A, Abarracion I, Pio G (2003) Sensibilidad de Chlorella vulgaris y Scenedesmus quadricauda a la Cipermetrina. Fase preliminar. Retel 7:1–15

    Google Scholar 

  • Sanchez L, Garza González T, Almaguer Cantú V, Sáenz Tavera I, Liñan Monte A (2008) Estudio cinético e isotermas de absorción de Ni (II) y Zn (II) utilizando biomasa de alga Chlorella sp. inmovilizada. Cienc UANL 2:198–177

    Google Scholar 

  • Sandifer P, Sutton-Grier A, Ward B (2015) Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: opportunities to enhance health and biodiversity conservation. Ecosyst Serv 1:1–15

    Article  Google Scholar 

  • Schocken MJ, Mao J, Schabacker DJ (1997) Microbial transformations of the fungicide cyprodinil (CGA-219417). J Agric Food Chem 45:3647–3651

    Article  CAS  Google Scholar 

  • Scragg AH, Morrison J, Shales SW (2003) The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzym Microb Technol 33:884–889

    Article  CAS  Google Scholar 

  • Shi XM, Zhang XW, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzym Microb Technol 27:312–318

    Article  CAS  Google Scholar 

  • Shi XM, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727

    Article  CAS  PubMed  Google Scholar 

  • Solomon KR, Baker DB, Richards RP, Dixon DR, Klaine SJ, LaPoint TW, Kendall RJ, Weisskopf CP, Giddings JM, Giesy JP, Hall LW, Williams WM (1996) Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 15:31–74

    Article  CAS  Google Scholar 

  • Stiles WAV, Styles D, Chapman SP, Esteves S, Bywater A, Melville L, Silkina A, Lupatsch I, Fuentes Grünewald C, Lovitt R, Chaloner T, Bull A, Morris C, Llewellyn CA (2018) Using microalgae in the circular economy to valorise anaerobic digestate: challenges and opportunities. Bioresour Technol 267:732–742

    Article  CAS  PubMed  Google Scholar 

  • Stringheta PC, Nachtigall AM, Oliveira TT, Ramos AM, Santána HMP, Goncalves MP (2006) Luteìna: propiedades antioxidantes e benefìcios à saúde. Alim Nutr 17:229–238

    CAS  Google Scholar 

  • Székács I, Fejes Á, Klátyik S, Takács E, Patkó D, Pomóthy J, Mörtl M, Horváth R, Madarász E, Darvas B, Székács A (2014) Environmental and toxicological impacts of glyphosate with its formulating adjuvant. Int J Biol Vet Agric Food Eng 8(3):212–218

    Google Scholar 

  • Tang JL, Hoagland KD, Siegfried BD (1998) Uptake and bioconcentration of atrazine by selected freshwater algae. Environ Toxicol Chem 17(6):1085–1090

    Article  CAS  Google Scholar 

  • Thies F, Backhaus T, Bossmann B, Grimme H (1996) Xentibiotic transformation in unicellular green algae—involvement of cytochrome P450 in the activation and selectivity of the pyridazinone pro-herbicide metflurazon. Plant Physiol 112:361–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • United Nations Organization for Agriculture and Food (FAO) (2013) Future expansion of soybean 2005–2014 implications for food security, sustainable rural development and agricultural policies in the countries of Mercosur and Bolivia. Synthesis document. Regional Office for Latin America and the Caribbean, Santiago

    Google Scholar 

  • United Nations Organization for Agriculture and Food (FAO) and National Institute of Agricultural Technology Argentina (INTA) (2012) Buenas Prácticas Pecuarias (BPP) para la producción y comercialización porcina familiar. Ministerio de Agricultura, ganadería y pesca de la Nación, Buenos Aires, p 277

    Google Scholar 

  • Vargas L, Cárdenas FCH, Hernández M, Araujo I, Yabroudi S, López F (2004) Efecto de las microalgas en la remoción de los compuestos nitrogenados presentes en la laguna facultativa de una planta de tratamiento de aguas residuales. In: Hernández-Reyes BM, Rodríguez-Palacio MC, Lozano-Ramírez C, Castilla-Hernández P (eds) Remoción de nutrientes por tres cultivos de microalgas libres e inmovilizados. Rev Latinoam Biotecnol Amb Algal 3(1):80–94

    Google Scholar 

  • Vera G, Tam G, Pinto E (2009) Ecotoxicological effects of crude oil, diesel 2 and kerosene on the population growth of the microalgae Chaetoceros gracilis Schutt. Ecol Apl 8:1–7

    Article  Google Scholar 

  • Vicari MP (2012) Efluentes en producción porcina en Argentina: generación, impacto ambiental y posibles tratamientos. Trabajo Final de Ingeniería en Producción Agropecuaria. Facultad de Ciencias Agrarias, Universidad Católica Argentina

    Google Scholar 

  • Vidal E, Negro A, Cassano A, Zalazar C (2015) Simplified reaction kinetics, models and experiments for glyphosate degradation in water by the UV/H2O2 process. Photochem Photobiol Sci 14:366–377

    Article  CAS  PubMed  Google Scholar 

  • Von Döhren P, Haase D (2015) Ecosystem disservices research: a review of the state of the art with a focus on cities. Ecol Indic 52:490–497. https://doi.org/10.1016/j.ecolind.2014.12.027

    Article  Google Scholar 

  • Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan R (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101:2623–2628

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Guo W, Yen HW, Ho SH, Lo YC, Cheng CL, Ren N, Chang JS (2015) Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresour Technol 198:619–625

    Article  CAS  PubMed  Google Scholar 

  • Weiner JA, DeLorenzo ME, Fulton MH (2004) Relationship between uptake capacity and differential toxicity of the herbicide atrazine in selected microalgal species. Aquat Toxicol 68(2):121–128

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (WHO) (1994) Glyphosate: environmental health criteria 159. World Health Organization, Geneva. http://www.inchem.org/documents/ehc/ehc/ehc159.htm

  • Wu RSS (1999) Eutrophication, water borne pathogens and xenobiotic compounds: environmental risks and challenges. Mar Pollut Bull 39:11–22

    Article  CAS  Google Scholar 

  • Xia A, Murphy JD (2016) Microalgal cultivation in treating liquid digestate from biogas systems. Trends Biotechnol 34(4):264–275

    Article  CAS  PubMed  Google Scholar 

  • Xie B, Gong W, Tang X, Bai L, Guo Y, Wang J, Zhao J, Fan J, Li G, Liang H (2019) Blending high concentration of anaerobic digestion effluent and rainwater for cost-effective Chlorella vulgaris cultivation in the photobioreactor. Chem Eng J 360:861–865

    Article  CAS  Google Scholar 

  • Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS (2014) An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res 21(1):6. https://doi.org/10.1186/2241-5793-21-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reno, U., Regaldo, L., Gagneten, A.M. (2020). Circular Economy and Agro-Industrial Wastewater: Potential of Microalgae in Bioremediation Processes. In: Zakaria, Z., Boopathy, R., Dib, J. (eds) Valorisation of Agro-industrial Residues – Volume I: Biological Approaches. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-39137-9_5

Download citation

Publish with us

Policies and ethics