Skip to main content

Granulation and Biodegradation by Microbial Species in Granular Sequencing Batch Reactor for Soy Sauce Wastewater Treatment

  • Chapter
  • First Online:

Abstract

At least 80,000 tonnes of the condiments were produced in Malaysia and estimated to increase in volume by 5% by the following year. In addition, one tonne of soy sauce generates about 7–9 tonnes of high strength wastewater. Aerobic granules are known to be regular, smooth, and nearly round in shape with excellent settling ability. They also have dense and strong microbial structure and high biomass retention with the ability to withstand high organic loading. These advantages encouraged recent development of aerobic granulation technology to treat high strength wastewaters such as soy sauce wastewater. Therefore, an efficient Granular Sequencing Batch Reactor (GSBR) treatment system ought to be in place to treat the high strength wastewater. The metagenome sequencing analysis revealed an abundance of microbial diversity accommodating in aerobic granular sludge cultivated with soy sauce wastewater. Existence of 77.52% exopolysaccharides substances (EPS)-producing bacteria such as Pseudomonas and Bacteroides which had the capability in biodegraded waste in wastewater biological treatment were found in aerobic granular sludge. Thus, the performances of aerobic granular sludge in biodegraded organic and nutrient from soy sauce wastewater were in consequence to the bacterial community that occupied in aerobic granules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adav SS, Lee DJ, Show KY, Tay JH (2008) Aerobic granular sludge: recent advances. Biotechnol Adv 26(5):411–423

    Article  CAS  PubMed  Google Scholar 

  • Adav SS, Lee DJ, Lai JY (2009) Functional consortium from aerobic granules under high organic loading rates. Bioresour Technol 100(14):3465–3470

    Article  CAS  PubMed  Google Scholar 

  • Bassin JP, Kleerebezem R, Dezotti M, Van Loosdrecht MCM (2012) Measuring biomass specific ammonium, nitrite and phosphate uptake rates in aerobic granular sludge. Chemosphere 89(10):1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Bolhuis H, Stal LJ (2011) Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing. ISME J 5(11):1701–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond PL, Keller J, Blackall LL (1998) Characterisation of enhanced biological phosphorus removal activated sludges with dissimilar phosphorus removal performances. Water Sci Technol 37(4):567–571

    Article  CAS  Google Scholar 

  • Cardenas E, Tiedje JM (2008) New tools for discovering and characterizing microbial diversity. Curr Opin Biotechnol 19(6):544–549

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhou S, Li T (2010) Impact of extracellular polymeric substances on the settlement ability of aerobic granular sludge. Environ Technol 31(14):1601–1612

    Article  CAS  PubMed  Google Scholar 

  • Chiu ZC, Chen MY, Lee DJ, Wang CH, Lai JY (2007) Oxygen diffusion in active layer of aerobic granule with step change in surrounding oxygen levels. Water Res 41(4):884–892

    Article  CAS  PubMed  Google Scholar 

  • Cirik K, Kitis M, Cinar O (2013) The effect of biological sulfate reduction on anaerobic color removal in anaerobic–aerobic sequencing batch reactors. Bioprocess Biosyst Eng 36(5):579–589

    Article  CAS  PubMed  Google Scholar 

  • Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinf 11:485–491

    Article  Google Scholar 

  • Dahalan FA (2012) Development and characterization of phototrophic aerobic granular sludge. Ph.D Thesis. Universiti Teknologi Malaysia

    Google Scholar 

  • De Sanctis M, Di Iaconi C, Lopez A, Rossetti S (2010) Granular biomass structure and population dynamics in Sequencing Batch Biofilter Granular Reactor (SBBGR). Bioresour Technol 101(7):2152–2158

    Article  PubMed  CAS  Google Scholar 

  • Di Iaconi C, Ramadori R, Lopez A (2006) Combined biological and chemical degradation for treating a mature municipal landfill leachate. Biochem Eng J 31(2):118–124

    Article  CAS  Google Scholar 

  • Di Iaconi C, Del Moro G, De Sanctis M, Rossetti S (2010) A chemically enhanced biological process for lowering operative costs and solid residues of industrial recalcitrant wastewater treatment. Water Res 44(12):3635–3644

    Article  PubMed  CAS  Google Scholar 

  • Dumitriu S (2004) Polysaccharides: structural diversity and functional versatility, 2nd edn. CRC, New York

    Book  Google Scholar 

  • Erşan YÇ, Erguder TH (2014) The effect of seed sludge type on aerobic granulation via anoxic–aerobic operation. Environ Technol 35(23):2928–2939

    Article  PubMed  CAS  Google Scholar 

  • Etterer TJ (2006) Formation, structure and function of aerobic granular sludge. Ph.D. Thesis. Technische Universität München, Munich

    Google Scholar 

  • Fernández-Nava Y, Maranon E, Soons J, Castrillón L (2008) Denitrification of wastewater containing high nitrate and calcium concentrations. Bioresour Technol 99(17):7976–7981

    Article  PubMed  CAS  Google Scholar 

  • Filali A, Manas A, Mercade M, Bessiere Y, Biscans B, Sperandio M (2012) Stability and performance of two GSBR operated in alternating anoxic/aerobic or anaerobic/aerobic conditions for nutrient removal. Biochem Eng J 67:10–19

    Article  CAS  Google Scholar 

  • Gao D, Liu L, Liang H, Wu WM (2011) Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment. Crit Rev Biotechnol 31(2):137–152

    Article  CAS  PubMed  Google Scholar 

  • Gerardi MH (2006) Wastewater bacteria, 5th edn. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Hui YH, Meunier-Goddik L, Josephsen J, Nip WK, Stanfield PS (2004) Handbook of food and beverage fermentation technology, 134th edn. Marcel Dekker, New York, NY

    Book  Google Scholar 

  • Jiang HL, Tay JH, Maszenan AM, Tay STL (2004) Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation. Appl Environ Microbiol 70(11):6767–6775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Mingchao MA, Jun LI, Anhuai LU, Zhong Z (2008) Bacterial diversity of active sludge in wastewater treatment plant. Earth Sci Front 15(6):163–168

    Article  CAS  Google Scholar 

  • Khan MZ, Mondal PK, Sabir S (2013) Aerobic granulation for wastewater bioremediation: a review. Can J Chem Eng 91(6):1045–1058

    Article  CAS  Google Scholar 

  • Kim IS, Kim SM, Jang A (2008) Characterization of aerobic granules by microbial density at different COD loading rates. Bioresour Technol 99(1):18–25

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Sajjad M, Lee J, Park J, Jun T (2014) Variation of extracellular polymeric substances (EPS) and specific resistance to filtration in sludge granulation process to the change of influent organic loading rate. Desalin Water Treat 52(22–24):4376–4387

    Article  CAS  Google Scholar 

  • Kishida N, Tsuneda S, Kim JH, Sudo R (2009) Simultaneous nitrogen and phosphorus removal from high-strength industrial wastewater using aerobic granular sludge. J Environ Eng 135(3):153–158

    Article  CAS  Google Scholar 

  • Klein G (2011) Antibiotic resistance and molecular characterization of probiotic and clinical Lactobacillus strains in relation to safety aspects of probiotics. Foodborne Pathog Dis 8(2):267–281

    Article  CAS  PubMed  Google Scholar 

  • Kragelund C, Kong Y, Van der Waarde J, Thelen K, Eikelboom D, Tandoi V, Thomsen TR, Nielsen PH (2006) Ecophysiology of different filamentous Alphaproteobacteria in industrial wastewater treatment plants. Microbiology 152(10):3003–3012

    Article  PubMed  Google Scholar 

  • Lee DG, Bonner JS, Garton LS, Ernest AN, Autenrieth RL (2002) Modeling coagulation kinetics incorporating fractal theories: comparison with observed data. Water Res 36(4):1056–1066

    Article  CAS  Google Scholar 

  • Lee C, Kim J, Shin SG, Hwang S (2008) Monitoring bacterial and archaeal community shifts in a mesophilic anaerobic batch reactor treating a high-strength organic wastewater. FEMS Microbiol Ecol 65(3):544–554

    Article  CAS  PubMed  Google Scholar 

  • Lee DJ, Chen YY, Show KY, Whiteley CG, Tay JH (2010) Advances in aerobic granule formation and granule stability in the course of storage and reactor operation. Biotechnol Adv 28(6):919–934

    Article  CAS  PubMed  Google Scholar 

  • Levantesi C, Beimfohr C, Geurkink B, Rossetti S, Thelen K, Krooneman J, Snaidr J, van der Waarde J, Tandoi V (2004) Filamentous Alphaproteobacteria associated with bulking in industrial wastewater treatment plants. Syst Appl Microbiol 27(6):716–727

    Article  CAS  PubMed  Google Scholar 

  • Li ZH, Kuba T, Kusuda T (2006) The influence of starvation phase on the properties and the development of aerobic granules. Enzym Microb Technol 38(5):670–674

    Article  CAS  Google Scholar 

  • Liu YQ, Liu Y, Tay JH (2004) The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl Microbiol Biotechnol 65(2):143–148

    Article  CAS  PubMed  Google Scholar 

  • Martins AM, Pagilla K, Heijnen JJ, van Loosdrecht MCM (2004) Filamentous bulking sludge – a critical review. Water Res 38(4):793–817

    Article  CAS  PubMed  Google Scholar 

  • Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinf 9:1–8

    Article  CAS  Google Scholar 

  • Mishima K, Nakamura M (1991) Self-immobilization of aerobic activated sludge – a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment. Water Sci Technol 23(4–6):981–990

    Article  CAS  Google Scholar 

  • Mongkolwai T, Assavanig A, Amnajsongsiri C, Flegel TW, Bhumiratana A (1997) Technology transfer for small and medium soy sauce fermentation factories in Thailand: a consortium approach. Food Res Int 30(8):555–563

    Article  CAS  Google Scholar 

  • More TT, Yadav JSS, Yan S, Tyagi RD, Surampalli RY (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manag 144:1–25

    Article  CAS  Google Scholar 

  • Muda K, Aris A, Salim MR, Ibrahim Z, Yahya A, Van Loosdrecht MCM, Ahmad A, Nawahwi MZ (2010) Development of granular sludge for textile wastewater treatment. Water Res 44(15):4341–4350

    Article  CAS  PubMed  Google Scholar 

  • Nagaoka H, Ueda S, Miya A (1996) Influence of bacterial extracellular polymers on the membrane separation activated sludge process. Water Sci Technol 34(9):165–172

    Article  CAS  Google Scholar 

  • Ni BJ, Yu HQ (2008) Storage and growth of denitrifiers in aerobic granules: Part I. Model development. Biotechnol Bioeng 99(2):314–323

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PH, Saunders AM, Hansen AA, Larsen P, Nielsen JL (2012) Microbial communities involved in enhanced biological phosphorus removal from wastewater—a model system in environmental biotechnology. Curr Opin Biotechnol 23(3):452–459

    Article  CAS  PubMed  Google Scholar 

  • Othman I, Anuar AN, Ujang Z, Rosman NH, Harun H, Chelliapan S (2013) Livestock wastewater treatment using aerobic granular sludge. Bioresour Technol 133:630–634

    Article  CAS  PubMed  Google Scholar 

  • Pijuan M, Werner U, Yuan Z (2009) Effect of long term anaerobic and intermittent anaerobic/aerobic starvation on aerobic granules. Water Res 43(14):3622–3632

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Liu Y (2006) Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic–anaerobic sequencing batch reactor. Chemosphere 63(6):926–933

    Article  CAS  PubMed  Google Scholar 

  • Schwarzenbeck N, Borges JM, Wilderer PA (2005) Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Appl Microbiol Biotechnol 66(6):711–718

    Article  CAS  PubMed  Google Scholar 

  • Shah HN, Gharbia S (2010) Mass spectrometry for microbial proteomics, vol 341. Wiley, Chichester

    Book  Google Scholar 

  • Song Z, Pan Y, Zhang K, Ren N, Wang A (2010) Effect of seed sludge on characteristics and microbial community of aerobic granular sludge. J Environ Sci 22(9):1312–1318

    Article  Google Scholar 

  • Su JJ, Yeh KS, Tseng PW (2006) A strain of Pseudomonas sp. isolated from piggery wastewater treatment systems with heterotrophic nitrification capability in Taiwan. Curr Microbiol 53(1):77–81

    Article  CAS  PubMed  Google Scholar 

  • Tay JH, Liu QS, Liu Y (2001) The role of cellular polysaccharides in the formation and stability of aerobic granules. Lett Appl Microbiol 33(3):222–226

    Article  CAS  PubMed  Google Scholar 

  • Tay JH, Pan S, He Y, Tay STL (2004) Effect of organic loading rate on aerobic granulation. I: Reactor performance. J Environ Eng 130(10):1094–1101

    Article  CAS  Google Scholar 

  • Van Der Waarde J, Krooneman J, Geurkink B, Van Der Werf A, Eikelboom D, Beimfohr C, Snaidr J, Levantesi C, Tandoi V (2002) Molecular monitoring of bulking sludge in industrial wastewater treatment plants. Water Science and Technology 46(1–2):551–558

    Article  CAS  PubMed  Google Scholar 

  • Veiga MC, Jain MK, Wu W, Hollingsworth RI, Zeikus JG (1997) Composition and role of extracellular polymers in methanogenic granules. Appl Environ Microbiol 63(2):403–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verawaty M, Tait S, Pijuan M, Yuan Z, Bond PL (2013) Breakage and growth towards a stable aerobic granule size during the treatment of wastewater. Water Res 47(14):5338–5349

    Article  CAS  PubMed  Google Scholar 

  • Vijayaraghavan K, Ahmad D, Aziz MEBA (2007) Aerobic treatment of palm oil mill effluent. J Environ Manag 82(1):24–31

    Article  CAS  Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14(7):2535–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Ji M, Li R, Qin F (2012) Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors. Waste Manag 32(3):448–455

    Article  CAS  PubMed  Google Scholar 

  • Weiss A, Jérôme V, Freitag R (2007) Comparison of strategies for the isolation of PCR-compatible, genomic DNA from a municipal biogas plants. J Chromatogr B 853(1):190–197

    Article  CAS  Google Scholar 

  • Wingender J, Neu TR, Flemming HC (1999) What are bacterial extracellular polymeric substances? Microbial extracellular polymeric substances. Springer, Berlin, pp 1–19

    Book  Google Scholar 

  • Winkler MH, Kleerebezem R, De Bruin LMM, Verheijen PJT, Abbas B, Habermacher J, Van Loosdrecht MCM (2013) Microbial diversity differences within aerobic granular sludge and activated sludge flocs. Appl Microbiol Biotechnol 97(16):7447–7458

    Article  CAS  PubMed  Google Scholar 

  • Wu CY, Peng YZ, Wang RD, Zhou YX (2012) Understanding the granulation process of activated sludge in a biological phosphorus removal sequencing batch reactor. Chemosphere 86(8):767–773

    Article  CAS  PubMed  Google Scholar 

  • Yadav V, Prappulla SG, Jha A, Poonia A (2011) A novel exopolysaccharide from probiotic Lactobacillus fermentum CFR 2195: production, purification and characterization. Biotechnology. Bioinf Bioeng 1:415–421

    Google Scholar 

  • Yadav TC, Khardenavis AA, Kapley A (2014) Shifts in microbial community in response to dissolved oxygen levels in activated sludge. Bioresour Technol 165:257–264

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Subramanian B, Surampalli RY, Narasiah S, Tyagi RD (2007) Isolation, characterization, and identification of bacteria from activated sludge and soluble microbial products in wastewater treatment systems. Pract Period Hazard Toxic Radioact Waste Manage 11(4):240–258

    Article  CAS  Google Scholar 

  • Yu K, Zhang T (2012) Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS One 7(5):1–13

    Article  Google Scholar 

  • Zhang L, Feng X, Zhu N, Chen J (2007) Role of extracellular protein in the formation and stability of aerobic granules. Enzym Microb Technol 41(5):551–557

    Article  CAS  Google Scholar 

  • Zhang B, Ji M, Qiu Z, Liu H, Wang J, Li J (2011) Microbial population dynamics during sludge granulation in an anaerobic–aerobic biological phosphorus removal system. Bioresour Technol 102(3):2474–2480

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aznah Nor Anuar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harun, H. et al. (2020). Granulation and Biodegradation by Microbial Species in Granular Sequencing Batch Reactor for Soy Sauce Wastewater Treatment. In: Zakaria, Z., Boopathy, R., Dib, J. (eds) Valorisation of Agro-industrial Residues – Volume I: Biological Approaches. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-39137-9_14

Download citation

Publish with us

Policies and ethics