Skip to main content

A Procedure for Laplace Transform Inversion Based on Smoothing Exponential-Polynomial Splines

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2019)

Abstract

Multi-exponential decaying data are very frequent in applications and a continuous description of this type of data allows the use of mathematical tools for data analysis such as the Laplace Transform (LT). In this work a numerical procedure for the Laplace Transform Inversion (LTI) of multi-exponential decaying data is proposed. It is based on a new fitting model, that is a smoothing exponential-polynomial spline with segments expressed in Bernstein-like bases. A numerical experiment concerning the application of a LTI method applied to our spline model highlights that it is very promising in the LTI of exponential decay data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertero, M., Brianzi, P., Pike, E.R.: On the recovery and resolution of exponential relaxation rates from experimental data: Laplace transform inversion in weighted spaces. Inverse Probl. 1, 1–15 (1985)

    Article  MathSciNet  Google Scholar 

  2. Campagna, R., Conti, C., Cuomo, S.: Smoothing exponential-polynomial splines for multiexponential decay data. Dolomites Res. Notes Approx. 12, 86–100 (2019)

    MathSciNet  Google Scholar 

  3. Campagna, R., D’Amore, L., Murli, A.: An efficient algorithm for regularization of Laplace transform inversion in real case. J. Comput. Appl. Math. 210(1), 84–98 (2007)

    Article  MathSciNet  Google Scholar 

  4. Cuomo, S., D’Amore, L., Murli, A., Rizzardi, M.: Computation of the inverse Laplace transform based on a collocation method which uses only real values. J. Comput. Appl. Math. 198(1), 98–115 (2007)

    Article  MathSciNet  Google Scholar 

  5. D’Amore, L., Campagna, R., Galletti, A., Marcellino, L., Murli, A.: A smoothing spline that approximates Laplace transform functions only known on measurements on the real axis. Inverse Probl. 28(2), 025007 (2012)

    Article  MathSciNet  Google Scholar 

  6. D’Amore, L., Campagna, R., Mele, V., Murli, A.: ReLaTIve. An Ansi C90 software package for the real Laplace transform inversion. Numer. Algorithms 63(1), 187–211 (2013)

    Article  MathSciNet  Google Scholar 

  7. D’Amore, L., Campagna, R., Mele, V., Murli, A.: Algorithm 946: ReLIADiff-A C++ software package for real Laplace transform inversion based on algorithmic differentiation. ACM Trans. Math. Softw. 40(4), 31:1–31:20 (2014)

    MathSciNet  MATH  Google Scholar 

  8. D’Amore, L., Mele, V., Campagna, R.: Quality assurance of Gaver’s formula for multi-precision Laplace transform inversion in real case. Inverse Probl. Sci. Eng. 26(4), 553–580 (2018)

    Article  MathSciNet  Google Scholar 

  9. Galvosas, P., Callaghan, P.T.: Multi-dimensional inverse Laplace spectroscopy in the NMR of porous media. C.R. Phys. 11(2), 172–180 (2010). Multiscale NMR and relaxation

    Article  Google Scholar 

  10. Henrici, P.: Applied and Computational Complex Analysis, Volume 1: Power Series Integration Conformal Mapping Location of Zero (1988)

    Google Scholar 

  11. Miller, M.K., Guy, W.T.: Numerical inversion of the Laplace transform by use of Jacobi polynomials. SIAM J. Numer. Anal. 3(4), 624–635 (1966)

    Article  MathSciNet  Google Scholar 

  12. Naeeni, M.R., Campagna, R., Eskandari-Ghadi, M., Ardalan, A.A.: Performance comparison of numerical inversion methods for Laplace and Hankel integral transforms in engineering problems. Appl. Math. Comput. 250, 759–775 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Papoulis, A.: A new method of inversion of the Laplace transform. Q. Appl. Math. 14(4), 405–414 (1957)

    Article  MathSciNet  Google Scholar 

  14. Provencher, S.W.: Contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput. Phys. Commun. 27(3), 229–242 (1982)

    Article  Google Scholar 

  15. Romano, A., Campagna, R., Masi, P., Cuomo, S., Toraldo, G.: Data-driven approaches to predict states in a food technology case study. In: 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI), pp. 1–5 (2018)

    Google Scholar 

  16. Romano, A., Cavella, S., Toraldo, G., Masi, P.: 2D structural imaging study of bubble evolution during leavening. Food Res. Int. 50(1), 324–329 (2013)

    Article  Google Scholar 

  17. Schumaker, L.: Spline Functions: Basic Theory, 3rd edn. Cambridge Mathematical Library, Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  18. Severino, G., D’Urso, G., Scarfato, M., Toraldo, G.: The IoT as a tool to combine the scheduling of the irrigation with the geostatistics of the soils. Future Gener. Comput. Syst. 82, 268–273 (2018)

    Article  Google Scholar 

  19. Stehfest, H.: Algorithm 368: numerical inversion of Laplace transforms. Commun. ACM 13(1), 47–49 (1970)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are members of the INdAM Research group GNCS and of the Research ITalian network on Approximation (RITA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosanna Campagna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Campagna, R., Conti, C., Cuomo, S. (2020). A Procedure for Laplace Transform Inversion Based on Smoothing Exponential-Polynomial Splines. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11973. Springer, Cham. https://doi.org/10.1007/978-3-030-39081-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39081-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39080-8

  • Online ISBN: 978-3-030-39081-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics