Skip to main content

ATR-FTIR Analysis of Melamine Resin, Phenol-Formaldehyde Resin and Acrylonitrile-Butadiene Rubber Blend Modified by High-Energy Electron Beam Radiation

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 124))

Abstract

The influence of high-energy electron beam irradiation on melamine resin, phenol-formaldehyde resin and acrylonitrile-butadiene rubber blend was studied. The response of the studied material to 5 MeV electron beam irradiation with doses from 77 up to 284 kGy was examined and compared to non-irradiated material using the attenuated total reflection Fourier transform infrared spectroscopy. The infrared spectra were acquired in an absorbance mode for wavenumbers ranging from 4000 to 450 cm−1.The effect of electron beam radiation on the chemistry of the irradiated material was proven by varying the peak intensity for the absorption bands of the functional groups of the blend and its individual components. The infrared spectrum analysis demonstrated that at radiation doses of up to 150 kGy in the test blend, the intensity of the radiation-induced cross-linking reactions prevailed over the intensity of the polymer chain cleavage reactions and the breaking of the intermolecular bonds between them. At higher doses of absorbed radiation, radiation-induced degradation processes begin to dominate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Carlsson, D.J., Chmela, S.: Polymers and high-energy irradiation. Degradation and stabilization. In: Scott, G. (ed.) Mechanisms of Polymer Degradation and Stabilization, 1st edn. Springer, Netherlands (1990)

    Chapter  Google Scholar 

  2. Holík, Z., Danek, M., Manas, M., et al.: The influence of ionizing radiation on chemical resistance of polymers. IJMS 5(3), 210–217 (2011)

    Google Scholar 

  3. Drobny, J.G.: Ionizing Radiation and Polymers, Principles, Technology and Applications. Elsevier (2013)

    Google Scholar 

  4. Bijwe, J.: Composites as friction materials: recent developments in non-asbestos fiber reinforced friction materials—a review. Polym. Compos. 18(3) (2004)

    Article  Google Scholar 

  5. Spadaro, G., Alessi, S., Dispenza, C.: Ionizing radiation-induced crosslinking and degradation of polymers. In: Sun, Y., Chmielewski, A.G. (eds.) Applications of Ionizing Radiation, 2nd edn. Mater. Process. Warsaw (2017)

    Google Scholar 

  6. Kashiwagi, M., Hoshi, Y.: Electron beam processing system and its application. SEI Tech Rev 75, 47–53 (2012)

    Google Scholar 

  7. Nemtanu, R.M., Brasoveanu, M.: Practical Aspects and Applications of Electron Beam Irradiation. Kerala, India (2011)

    Google Scholar 

  8. Singh, P., Venugopal, B.R., Nandini, D.R.: Effect of electron beam irradiation on polymers. J. Mod. Mater. 5(1), 24–33 (2018)

    Article  Google Scholar 

  9. Sabharwal, S.: Electron beam irradiation applications. Proc. PAC 2013, 745–748 (2013)

    Google Scholar 

  10. Manas, D., Ovsik, M., Mizera, A., et al.: The effect of irradiation on mechanical and thermal properties of selected types of polymers. Polymers 10(2), 158 (2018)

    Article  Google Scholar 

  11. Rouif, S.: Radiation cross-linked polymers: recent developments and new applications. Nucl. Instrum. Methods Phys. Res. 236(1–4), 68–72 (2005)

    Article  Google Scholar 

  12. Smith, B.C.: Fundamentals of Fourier Transform Infrared Spectroscopy. CRC Press, Florida (2011)

    Book  Google Scholar 

  13. Stephen, A., LinCarlton, Y., Dence, W.: Methods in Lignin Chemistry. Springer, Switzerland (2011)

    Google Scholar 

  14. Christy, A.A., Ozaki, Y., Gregoriou, V.G.: Modern Fourier Transform Infrared Spectroscopy. Elsevier Science, New York (2001)

    Google Scholar 

  15. Guillén, M.D., Goicoechea, E.: Detection of primary and secondary oxidation products by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (NMR) in sunflower oil during storage. J. Agric. Food Chem. 55(26), 10729–10736 (2008)

    Article  Google Scholar 

  16. Nikolic, G.S.: Fourier Transforms—New Analytical Approaches and FTIR Strategies. Rijeka, Croatia (2011)

    Google Scholar 

  17. Berthomieu, C., Hienerwadel, R.: Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res. 101, 157–170 (2009)

    Article  Google Scholar 

  18. Liu, S.J., Yang, H., De-kang, Wu, et al.: Application of Fourier transform infrared spectra (FTIR) fingerprint in the quality control of mineral Chinese medicine limonitum. NCBI 35(4), 909–913 (2015)

    Google Scholar 

  19. Seelenbinder, J., Rein, A.: Positive Material Identification: Qualification, Composition Verification and Counterfeit Detection of Polymeric Material using Mobile FTIR Spectrometers. Danbury, USA (2014)

    Google Scholar 

  20. Ramos, P.M., Fernández-Coppel, I.A., Ruíz-Potosme, N.M., et al.: Potential of ATR-FTIR spectroscopy for the classification of natural resins. BEMS Rep. 4(1), 03–06 (2018)

    Article  Google Scholar 

  21. Poljanšek, I., Krajnc, M.: Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR spectroscopy. Acta Chim. Slov. 52, 238–244 (2005)

    Google Scholar 

  22. Ambrose, D., Abdala, A.A., Vukusic, S.: Melamine formaldehyde: curing studies and reaction mechanism. Polym. J. 45(4), 413–419 (2013)

    Article  Google Scholar 

  23. Zhao, J., Yang, R., Iervolino, R., Barbera, S.: Changes of chemical structure and mechanical property levels during thermo-oxidative aging of NBR. Rubber Chem. Technol. 86(4), 591–603 (2013)

    Article  Google Scholar 

  24. Kodama, Y., Batista de Lima, N., Giovedi, C., et al.: WAXD and FTIR studies of electron beam irradiated biodegradable polymers. J. Phys. Sci. 2(4), 80–87 (2012)

    Google Scholar 

  25. Shin, S., Lee, S.: The influence of electron-beam irradiation on the chemical and the structural properties of medical-grade polyurethane. J. Korean Phys. Soc. 67(1), 71–75 (2015)

    Article  Google Scholar 

  26. Vijayabaskar, V., Bhowmick, A.K.: Electron-beam modification of nitrile rubber in the presence of polyfunctional monomers. J. Appl. Polym. Sci. 95(2), 435–447 (2004)

    Article  Google Scholar 

  27. Kopal, I., Vršková, J., Labaj, I., et al.: The effect of high-energy ionizing radiation on the mechanical properties of a melamine resin, phenol-formaldehyde resin, and nitrile rubber blend. Materials 11(12), 2405 (2018)

    Article  Google Scholar 

  28. Kopal, I., Vršková, J., Ondrušová, D., et al.: Modeling the thermal decomposition of friction composite systems based on yarn reinforced polymer matrices using artificial neural networks. Materwiss Werksttech 50(5), 616–628 (2019)

    Article  Google Scholar 

  29. Kalous, V.: How modern chemistry investigate of molecule structure. Prague (1983)

    Google Scholar 

  30. Talabi, S.I., Luz, A.P., Pandolfelli, V.C., Lucas, A.A.: Structural evolution during the catalytic graphization of a thermosetting refractory binder and oxidation resistance of the derived carbons. Mater. Chem. Phys. 212, 113–121 (2018)

    Article  Google Scholar 

  31. Weiss, S., Urdl, K., Mayer, H.A. et al.: IR spectroscopy: suitable method for determination of curing degree and crosslinking type in melamine–formaldehyde resins. J. Appl. Polym. Sci. 136 (2019)

    Article  Google Scholar 

  32. Hassan, M.M.: Effect of gamma irradiation on some properties of reclaimed rubber/nitrile-butadiene rubber blend and its swelling in motor and brake oils. J. Elastomers Plast. 45(1), 77–94 (2012)

    Article  Google Scholar 

  33. Hampton, C., Demoin, D.: Vibrational spectroscopy tutorial: sulfur and phosphorus. NIST Chemistry Web Book (2010). https://faculty.missouri.edu/~glaserr/8160f10/A03_Silver.pdf. Accessed 2018

Download references

Acknowledgements

This research work has been supported by the Slovak Scientific Grant Agency project VEGA 1/0589/17, Slovak grant project KEGA 002TnUAD-4/2019, by the research and development project MSMT-15304/2017-1, the INTER-EXCELLENCE programme “European Anthroposphere as a Source of Raw Materials” LTC 17051 and by the project “Centre for quality testing and diagnostics of materials—CEDITEK”, ITMS code 26210120046 relating to the Operational Program Research and project “Advancement and support of R&D for “Centre for diagnostics and quality testing of materials in the domains of the RIS3 SK specialization”, code NFP313010W442.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliána Vršková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kopal, I. et al. (2020). ATR-FTIR Analysis of Melamine Resin, Phenol-Formaldehyde Resin and Acrylonitrile-Butadiene Rubber Blend Modified by High-Energy Electron Beam Radiation. In: Öchsner, A., Altenbach, H. (eds) Engineering Design Applications III. Advanced Structured Materials, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-030-39062-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39062-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39061-7

  • Online ISBN: 978-3-030-39062-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics