Skip to main content

The Biology of Immune-Active Cancers and Their Regulatory Mechanisms

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Cancer Treatment and Research ((CTAR,volume 180))

Abstract

The development of cancer results from the evolutionary balance between the proliferating aptitude of cancer cells and the response of the host’s tissues. Some cancers are characterized by genetic instability dependent upon impaired DNA repair mechanisms that lead to the chaotic disruption of multiple cellular functions often in excess of the cancer survival needs and may exert broad effects on surrounding tissues, some beneficial and some detrimental to cancer growth. Among them, inflammatory processes that accompany wound healing may initiate a reaction of the host against the neo-formation. This is possibly triggered by the release by dying cancer cells of molecules known as Damage-Associated Molecular Patterns (DAMPs) following a process termed Immunogenic Cell Death (ICD) that initiates an immune response through innate and adaptive mechanisms. Indeed, analysis of large cancer data sets has shown that ICD is strictly associated with the activation of other immune effector or immune-regulatory pathways. Here, we will describe how immune activation and compensatory immune-regulatory mechanisms balance anti-cancer immune surveillance and the roles that innate and adaptive immunity play including the weight that neo-epitopes may exert as initiators and sculptors of high-affinity memory and effector immune responses against cancer. We will discuss the evolutionary basis for the existence of immune checkpoints and how several theories raised to explain cancer resistance to immunotherapy represent a facet of a similar evolutionary phenomenon that we described in the Theory of Everything. We will show how the biology of immunogenicity and counterbalancing immune regulation is widespread across cancers independent of their ontogenesis while subtle idiosyncratic differences are discernible among them. Finally, we will suggest that overcoming immune resistance implies distinct approaches relevant to the immune context of individual cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In bold are transcripts in common between the ICR and the TIS signature.

Abbreviations

ACT :

Adoptive Cell Therapy

CIR :

Cancer Immune Responsiveness

CIT :

Checkpoint Inhibitor Therapy

DAMPs :

Damage-Associated Molecular Patterns

DSP :

Digital Spatial Profiling

HMGB1 :

High Mobility Group Box 1

ICD :

Immunogenic Cell Death

ICR :

Immunologic Constant of Rejection

IDO :

Indoleamine 2,3-Dioxygenase

IFN :

Interferon

IL :

Interleukin

IO :

Immune Oncology

NOS :

Nitric Oxide Synthase

PDL1 :

Programmed Cell Death Protein Ligand 1

TCGA :

The Cancer Genome Atlas

TGF :

Transforming Growth Factor

TILs :

Tumor-Infiltrating Lymphocytes

TIM-3/HAVCR2 :

T cell Immunoglobulin and Mucin-domain containing-3/Hepatitis A Virus Cellular Receptor 2

TIS :

Tumor Inflammation Signature

TMB :

Tumor Mutational Burden

TME :

Tumor Micro-environment

TOC :

Two Option Choice

TOE :

Theory Of Everything

VEGF :

Vascular Endothelial Growth Factor

VISTA :

V-domain Immunoglobulin Suppressor of T cell Activation

References

  1. Mantovani A, Romero P, Palucka AK, Marincola FM (2008) Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 371(9614):771–783

    Article  CAS  PubMed  Google Scholar 

  2. Lu R, Turan T, Samayoa J, Marincola FM (2017) Cancer immune resistance: can theories converge? Emerg Top Life Sci 1(5):411–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Turan T, Kannan D, Patel M, Matthew Barnes J, Tanlimco SG, Lu R et al (2018) Immune oncology, immune responsiveness and the theory of everything. J Immunother Cancer 6(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tomasetti C, Vogelstein B, Parmigiani G (2013) Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc Natl Acad Sci USA 110(6):1999–2004

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tysnes BB, Bjerkvig R (2007) Cancer initiation and progression: involvement of stem cells and the microenvironment. Biochim Biophys Acta 1775(2):283–297

    CAS  PubMed  Google Scholar 

  7. Yao Y, Dai W (2014) Genomic Instability and Cancer. J Carcinog Mutagen 5

    Google Scholar 

  8. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cahill DP, Kinzler KW, Vogelstein B, Lengauer C (1999) Genetic instability and darwinian selection in tumours. Trends Cell Biol 9(12):M57–M60

    Article  CAS  PubMed  Google Scholar 

  11. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545

    Article  CAS  PubMed  Google Scholar 

  12. Wang E, Worschech A, Marincola FM (2008) The immunologic constant of rejection. Trends Immunol 29(6):256–262

    Article  CAS  PubMed  Google Scholar 

  13. Fuchs EJ, Matzinger P (1996) Is cancer dangerous to the immune system? Semin Immunol 8(5):271–280

    Article  CAS  PubMed  Google Scholar 

  14. Matzinger P (2002) An innate sense of danger. Ann N Y Acad Sci 961:341–342

    Article  PubMed  Google Scholar 

  15. Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330

    Article  CAS  PubMed  Google Scholar 

  16. Gajewski TF (2015) The next hurdle in cancer immunotherapy: overcoming the non-t-cell-inflamed tumor microenvironment. Semin Oncol 42(4):663–671

    Article  PubMed  PubMed Central  Google Scholar 

  17. Morgan NG, Richardson SJ (2018) Fifty years of pancreatic islet pathology in human type 1 diabetes: insights gained and progress made. Diabetologia

    Google Scholar 

  18. Galon J, Angell HK, Bedognetti D, Marincola FM (2013) The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39(1):11–26

    Article  CAS  PubMed  Google Scholar 

  19. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    Article  CAS  PubMed  Google Scholar 

  20. Galon J, Fox BA, Bifulco CB, Masucci G, Rau T, Botti G et al (2016) Immunoscore and Immunoprofiling in cancer: an update from the melanoma and immunotherapy bridge 2015. J Transl Med 14:273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Galon J, Fridman WH, Pages F (2007) The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res 67(5):1883–1886

    Article  CAS  PubMed  Google Scholar 

  22. Galon J, Pages F, Marincola FM, Angell HK, Thurin M, Lugli A et al (2012) Cancer classification using the immunoscore: a worldwide task force. J Transl Med 10:205

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hendrickx W, Simeone I, Anjum S, Mokrab Y, Bertucci F, Finetti P et al (2017) Identification of genetic determinants of breast cancer immune phenotypes by integrative genome-scale analysis. Oncoimmunology 6(2):e1253654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miller LD, Chou JA, Black MA, Print C, Chifman J, Alistar A et al (2016) Immunogenic subtypes of breast cancer delineated by gene classifiers of immune responsiveness. Cancer Immunol Res 4(7):600–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bertucci F, Finetti P, Simeone I, Hendrickx W, Wang E, Marincola FM et al (2018) The immunologic constant of rejection classification refines the prognostic value of conventional prognostic signatures in breast cancer. Br J Cancer 119(11):1383–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH et al (2018) The immune landscape of cancer. Immunity 48(4):812–830.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH (2010) Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29(8):1093–1102

    Article  CAS  PubMed  Google Scholar 

  28. Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G et al (2009) In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27(35):5944–5951

    Article  CAS  PubMed  Google Scholar 

  29. Galon J, Lugli A, Bifulco C, Pages F, Masucci G, Marincola FM et al (2017) World-wide immunoscore task force: meeting report from the “Melanoma Bridge”, Napoli, November 30th–December 3rd, 2016. J Transl Med. 15(1):212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Galon J, Pages F, Marincola FM, Thurin M, Trinchieri G, Fox BA et al (2012) The immune score as a new possible approach for the classification of cancer. J Transl Med 10:1

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pages F, Mlecnik B, Marliot F, Bindea G, Ou FS, Bifulco C et al (2018) International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391(10135):2128–2139

    Article  PubMed  Google Scholar 

  32. Weiss GR, Grosh WW, Chianese-Bullock KA, Zhao Y, Liu H, Slingluff CL Jr et al (2011) Molecular insights on the peripheral and intratumoral effects of systemic high-dose rIL-2 (aldesleukin) administration for the treatment of metastatic melanoma. Clin Cancer Res 17(23):7440–7450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bedognetti D, Spivey TL, Zhao Y, Uccellini L, Tomei S, Dudley ME et al (2013) CXCR3/CCR5 pathways in metastatic melanoma patients treated with adoptive therapy and interleukin-2. Br J Cancer 109(9):2412–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang E, Miller LD, Ohnmacht GA, Mocellin S, Perez-Diez A, Petersen D et al (2002) Prospective molecular profiling of melanoma metastases suggests classifiers of immune responsiveness. Cancer Res 62(13):3581–3586

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Panelli MC, Stashower ME, Slade HB, Smith K, Norwood C, Abati A et al (2007) Sequential gene profiling of basal cell carcinomas treated with imiquimod in a placebo-controlled study defines the requirements for tissue rejection. Genome Biol 8(1):R8

    Google Scholar 

  36. Worschech A, Chen N, Yu YA, Zhang Q, Pos Z, Weibel S et al (2009) Systemic treatment of xenografts with vaccinia virus GLV-1h68 reveals the immunologic facet of oncolytic therapy. BMC Genom 10:301

    Article  CAS  Google Scholar 

  37. Worschech A, Haddad D, Stroncek DF, Wang E, Marincola FM, Szalay AA (2009) The immunologic aspects of poxvirus oncolytic therapy. Cancer Immunol Immunother 58(9):1355–1362

    Article  PubMed  PubMed Central  Google Scholar 

  38. Worschech A, Kmieciak M, Knutson KL, Bear HD, Szalay AA, Wang E et al (2008) Signatures associated with rejection or recurrence in HER-2/neu-positive mammary tumors. Cancer Res 68(7):2436–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Turan T, Kannan D, Patel M, Barnes MJ, Tanlimco SG, Lu R et al (2017) Immune oncology, immune responsiveness and the theory of everything. J Immunother Cancer (in press)

    Google Scholar 

  40. Spivey TL, Uccellini L, Ascierto ML, Zoppoli G, De Giorgi V, Delogu LG et al (2011) Gene expression profiling in acute allograft rejection: challenging the immunologic constant of rejection hypothesis. J Transl Med 9:174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bedognetti D, Hendrickx W, Marincola FM, Miller LD (2015) Prognostic and predictive immune gene signatures in breast cancer. Curr Opin Oncol 27(6):433–444

    Article  CAS  PubMed  Google Scholar 

  42. Danaher P, Warren S, Lu R, Samayoa J, Sullivan A, Pekker I et al (2018) Pan-cancer adaptive immune resistance as defined by the Tumor Inflammation Signature (TIS): results from The Cancer Genome Atlas (TCGA). J Immunother Cancer 6(1):63

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR et al (2017) IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest

    Google Scholar 

  44. Messerschmidt JL, Bhattacharya P, Messerschmidt GL (2017) Cancer clonal theory, immune escape, and their evolving roles in cancer multi-agent therapeutics. Curr Oncol Rep 19(10):66

    Article  CAS  PubMed  Google Scholar 

  45. Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun C et al (2018) Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci USA. 115(17):E4041–E4050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maccalli C, Parmiani G, Ferrone S (2017) Immunomodulating and immunoresistance properties of cancer-initiating cells: implications for the clinical success of immunotherapy. Immunol Invest 46(3):221–238

    Article  CAS  PubMed  Google Scholar 

  47. Chockley PJ, Keshamouni VG (2016) Immunological consequences of epithelial-mesenchymal transition in tumor progression. J Immunol 197(3):691–698

    Article  CAS  PubMed  Google Scholar 

  48. Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P et al (2014) Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 3(9):e955691

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jurikova M, Danihel L, Polak S, Varga I (2016) Ki67, PCNA, and MCM proteins: markers of proliferation in the diagnosis of breast cancer. Acta Histochem 118(5):544–552

    Article  CAS  PubMed  Google Scholar 

  50. Costache MI, Ioana M, Iordache S, Ene D, Costache CA, Saftoiu A (2015) VEGF expression in pancreatic cancer and other malignancies: a review of the literature. Rom J Intern Med 53(3):199–208

    CAS  PubMed  Google Scholar 

  51. Rahbari NN, Kedrin D, Incio J, Liu H, Ho WW, Nia HT et al (2016) Anti-VEGF therapy induces ECM remodeling and mechanical barriers to therapy in colorectal cancer liver metastases. Sci Transl Med 8(360):360ra135

    Google Scholar 

  52. Liu Q, Tomei S, Ascierto ML, De Giorgi V, Bedognetti D, Dai C et al (2014) Melanoma NOS1 expression promotes dysfunctional IFN signaling. J Clin Invest 124(5):2147–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thomas DD, Wink DA (2017) NOS2 as an emergent player in progression of cancer. Antioxid Redox Signal 26(17):963–965

    Article  CAS  PubMed  Google Scholar 

  54. Mondanelli G, Ugel S, Grohmann U, Bronte V (2017) The immune regulation in cancer by the amino acid metabolizing enzymes ARG and IDO. Curr Opin Pharmacol 35:30–39

    Article  CAS  PubMed  Google Scholar 

  55. Munn DH, Bronte V (2016) Immune suppressive mechanisms in the tumor microenvironment. Curr Opin Immunol 39:1–6

    Article  CAS  PubMed  Google Scholar 

  56. Hatfield SM, Kjaergaard J, Lukashev D, Belikoff B, Schreiber TH, Sethumadhavan S et al (2014) Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1alpha-dependent and extracellular adenosine-mediated tumor protection. J Mol Med (Berl). 92(12):1283–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hatfield SM, Kjaergaard J, Lukashev D, Schreiber TH, Belikoff B, Abbott R et al (2015) Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med 7(277):277ra30

    Google Scholar 

  58. Cascone T, McKenzie JA, Mbofung RM, Punt S, Wang Z, Xu C et al (2018) Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab 27(5):977–987.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Salerno EP, Bedognetti D, Mauldin IS, Deacon DH, Shea SM, Pinczewski J et al (2016) Human melanomas and ovarian cancers overexpressing mechanical barrier molecule genes lack immune signatures and have increased patient mortality risk. Oncoimmunology 5(12):e1240857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kandalaft LE, Facciabene A, Buckanovich RJ, Coukos G (2009) Endothelin B receptor, a new target in cancer immune therapy. Clin Cancer Res 15(14):4521–4528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Johnson MO, Wolf MM, Madden MZ, Andrejeva G, Sugiura A, Contreras DC et al (2018) Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175(7):1780–1795.e19

    Google Scholar 

  62. Eil R, Vodnala SK, Clever D, Klebanoff CA, Sukumar M, Pan JH et al (2016) Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537(7621):539–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C et al (2018) Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-gamma and IL-12. Immunity 49(6):1148–1161.e7

    Google Scholar 

  64. Mattox AK, Lee J, Westra WH, Pierce RH, Ghossein R, Faquin WC et al (2017) PD-1 expression in head and neck squamous cell carcinomas derives primarily from functionally anergic CD4(+) TILs in the presence of PD-L1(+) TAMs. Cancer Res 77(22):6365–6374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Turan T, Kannan D, Patel M, Barnes JM, Tanlimco SG, Lu R et al (2018) Immune oncology, immune responsiveness and the theory of everything. J Immunother Cancer (in press)

    Google Scholar 

  66. Pockaj BA, Sherry RM, Wei JP, Yannelli JR, Carter CS, Leitman SF et al (1994) Localization of 111indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive immunotherapy. Augmentation with cyclophosphamide and correlation with response. Cancer 73(6):1731–1737

    Google Scholar 

  67. Lee KH, Panelli MC, Kim CJ, Riker AI, Bettinotti MP, Roden MM et al (1998) Functional dissociation between local and systemic immune response during anti-melanoma peptide vaccination. J Immunol 161(8):4183–4194

    Google Scholar 

  68. Lee KH, Wang E, Nielsen MB, Wunderlich J, Migueles S, Connors M et al (1999) Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J Immunol 163(11):6292–6300

    CAS  PubMed  Google Scholar 

  69. Ascierto PA, Agarwala S, Botti G, Cesano A, Ciliberto G, Davies MA et al (2016) Future perspectives in melanoma research: meeting report from the “Melanoma Bridge”. Napoli, December 1st–4th 2015. J Transl Med 14(1):313

    Google Scholar 

  70. Amaria RN, Reddy SM, Tawbi HA, Davies MA, Ross MI, Glitza IC et al (2018) Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat Med 24(11):1649–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Blank CU, Rozeman EA, Fanchi LF, Sikorska K, van de Wiel B, Kvistborg P et al (2018) Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat Med 24(11):1655–1661

    Article  CAS  PubMed  Google Scholar 

  72. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T et al (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515(7528):577–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ward JP, Gubin MM, Schreiber RD (2016) The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv Immunol 130:25–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Blankenstein T, Leisegang M, Uckert W, Schreiber H (2015) Targeting cancer-specific mutations by T cell receptor gene therapy. Curr Opin Immunol 33:112–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thomas A, Routh ED, Pullikuth A, Jin G, Su J, Chou JW et al (2018) Tumor mutational burden is a determinant of immune-mediated survival in breast cancer. Oncoimmunology 7(10):e1490854

    Article  PubMed  PubMed Central  Google Scholar 

  76. Snyder A, Nathanson T, Funt SA, Ahuja A, Buros Novik J, Hellmann MD et al (2017) Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: An exploratory multi-omic analysis. PLoS Med. 14(5):e1002309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V et al (2017) Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16(11):2598–2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Johnson DB, Frampton GM, Rioth MJ, Yusko E, Xu Y, Guo X et al (2016) Targeted next generation sequencing identifies markers of response to PD-1 blockade. Cancer Immunol Res 4(11):959–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D et al (2018) Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol 36(7):633–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128

    Google Scholar 

  83. Saeterdal I, Bjorheim J, Lislerud K, Gjertsen MK, Bukholm IK, Olsen OC et al (2001) Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc Natl Acad Sci USA 98(23):13255–13260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Brainstorm C, Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J et al (2018) Analysis of shared heritability in common disorders of the brain. Science. 360(6395)

    Google Scholar 

  85. Johanns TM, Ward JP, Miller CA, Wilson C, Kobayashi DK, Bender D et al (2016) Endogenous neoantigen-specific CD8 T cells identified in two glioblastoma models using a cancer immunogenomics approach. Cancer Immunol Res 4(12):1007–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moore TV, Lyons GE, Brasic N, Roszkowski JJ, Voelkl S, Mackensen A et al (2009) Relationship between CD8-dependent antigen recognition, T cell functional avidity, and tumor cell recognition. Cancer Immunol Immunother 58(5):719–728

    Article  CAS  PubMed  Google Scholar 

  87. Voelkl S, Moore TV, Rehli M, Nishimura MI, Mackensen A, Fischer K (2009) Characterization of MHC class-I restricted TCRalphabeta+ CD4 CD8 double negative T cells recognizing the gp100 antigen from a melanoma patient after gp100 vaccination. Cancer Immunol Immunother 58(5):709–718

    Article  CAS  PubMed  Google Scholar 

  88. Zacharakis N, Chinnasamy H, Black M, Xu H, Lu YC, Zheng Z et al (2018) Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med 24(6):724–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Deniger DC, Pasetto A, Robbins PF, Gartner JJ, Prickett TD, Paria BC et al (2018) T-cell responses to TP53 “Hotspot” mutations and unique neoantigens expressed by human ovarian cancers. Clin Cancer Res 24(22):5562–5573

    Article  PubMed  PubMed Central  Google Scholar 

  90. Spranger S, Luke JJ, Bao R, Zha Y, Hernandez KM, Li Y et al (2016) Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma. Proc Natl Acad Sci USA 113(48):E7759–E7768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Janeway CA, Jr (2013) Pillars article: approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989, 54:1–13. J Immunol 2013, 191(9):4475–4487

    Google Scholar 

  92. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13

    Article  CAS  PubMed  Google Scholar 

  93. Janeway CA Jr, Medzhitov R (1998) Introduction: the role of innate immunity in the adaptive immune response. Semin Immunol 10(5):349–350

    Article  PubMed  Google Scholar 

  94. Medzhitov R, Janeway CA Jr (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91(3):295–298

    Article  CAS  PubMed  Google Scholar 

  95. Medzhitov R, Janeway CA Jr (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9(1):4–9

    Article  CAS  PubMed  Google Scholar 

  96. Garg AD, Vandenberk L, Fang S, Fasche T, Van Eygen S, Maes J et al (2017) Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing. Cell Death Differ 24(5):832–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cui Z, Willingham MC, Hicks AM, Alexander-Miller MA, Howard TD, Hawkins GA et al (2003) Spontaneous regression of advanced cancer: identification of a unique genetically determined, age-dependent trait in mice. Proc Natl Acad Sci USA 100(11):6682–6687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hicks AM, Riedlinger G, Willingham MC, Alexander-Miller MA, Von Kap-Herr C, Pettenati MJ et al (2006) Transferable anticancer innate immunity in spontaneous regression/complete resistance mice. Proc Natl Acad Sci USA 103(20):7753–7758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hicks AM, Willingham MC, Du W, Pang CS, Old LJ, Cui Z (2006) Effector mechanisms of the anti-cancer immune responses of macrophages in SR/CR mice. Cancer Immun 6:11

    PubMed  Google Scholar 

  100. Riedlinger G, Adams J, Stehle JR Jr, Blanks MJ, Sanders AM, Hicks AM et al (2010) The spectrum of resistance in SR/CR mice: the critical role of chemoattraction in the cancer/leukocyte interaction. BMC Cancer 10:179

    Article  PubMed  PubMed Central  Google Scholar 

  101. Fuchs EJ, Matzinger P (1992) B cells turn off virgin but not memory T cells. Science 258(5085):1156–1159

    Article  CAS  PubMed  Google Scholar 

  102. Fuchs EJ, Ridge JP, Matzinger P (1996) Response: immunological tolerance. Science 272(5267):1406–1408

    Article  CAS  PubMed  Google Scholar 

  103. Matzinger P (1998) An innate sense of danger. Semin Immunol 10(5):399–415

    Article  CAS  PubMed  Google Scholar 

  104. Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72

    Article  CAS  PubMed  Google Scholar 

  105. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G (2017) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17(2):97–111

    Article  CAS  PubMed  Google Scholar 

  106. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P et al (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25(3):486–541

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Rivoltini L, Topalian SL et al (1994) Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci USA 91(9):3515–3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakaguchi K, Appella E et al (1994) Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 91(14):6458–6462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Galluzzi L, Senovilla L, Zitvogel L, Kroemer G (2012) The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 11(3):215–233

    Article  CAS  PubMed  Google Scholar 

  110. Obeid M (2008) ERP57 membrane translocation dictates the immunogenicity of tumor cell death by controlling the membrane translocation of calreticulin. J Immunol 181(4):2533–2543

    Article  CAS  PubMed  Google Scholar 

  111. Pozzi C, Cuomo A, Spadoni I, Magni E, Silvola A, Conte A et al (2016) The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nat Med 22(6):624–631

    Article  CAS  PubMed  Google Scholar 

  112. Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM et al (2015) Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol 6:588

    Article  PubMed  PubMed Central  Google Scholar 

  113. Spranger S, Gajewski TF (2015) A new paradigm for tumor immune escape: beta-catenin-driven immune exclusion. J Immunother Cancer 3:43

    Article  PubMed  PubMed Central  Google Scholar 

  114. Spranger S, Sivan A, Corrales L, Gajewski TF (2016) Tumor and host factors controlling antitumor immunity and efficacy of cancer immunotherapy. Adv Immunol 130:75–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sweis RF, Spranger S, Bao R, Paner GP, Stadler WM, Steinberg G et al (2016) Molecular drivers of the non-T-cell-inflamed tumor microenvironment in urothelial bladder cancer. Cancer Immunol Res 4(7):563–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG et al (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 7:10501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, Twyman-Saint Victor C et al (2016) Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167(6):1540–1554.e12

    Google Scholar 

  118. Chihara N, Madi A, Kondo T, Zhang H, Acharya N, Singer M et al (2018) Induction and transcriptional regulation of the co-inhibitory gene module in T cells. Nature 558(7710):454–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF et al (2011) A human memory T cell subset with stem cell-like properties. Nat Med 17(10):1290–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gattinoni L, Klebanoff CA, Restifo NP (2012) Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer 12(10):671–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Crompton JG, Narayanan M, Cuddapah S, Roychoudhuri R, Ji Y, Yang W et al (2016) Lineage relationship of CD8(+) T cell subsets is revealed by progressive changes in the epigenetic landscape. Cell Mol Immunol 13(4):502–513

    Article  CAS  PubMed  Google Scholar 

  122. Restifo NP, Gattinoni L (2013) Lineage relationship of effector and memory T cells. Curr Opin Immunol 25(5):556–563

    Article  CAS  PubMed  Google Scholar 

  123. Blando J, Sharma A, Higa MG, Zhao H, Vence L, Yadav SS et al (2019) Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer. Proc Natl Acad Sci USA 116(5):1692–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gao J, Ward JF, Pettaway CA, Shi LZ, Subudhi SK, Vence LM et al (2017) VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med 23(5):551–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Akalu YT, Rothlin CV, Ghosh S (2017) TAM receptor tyrosine kinases as emerging targets of innate immune checkpoint blockade for cancer therapy. Immunol Rev 276(1):165–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang B, Fang L, Wu HM, Ding PS, Xu K, Liu RY (2016) Mer receptor tyrosine kinase negatively regulates lipoteichoic acid-induced inflammatory response via PI3K/Akt and SOCS3. Mol Immunol 76:98–107

    Article  CAS  PubMed  Google Scholar 

  127. Ho WS, Wang H, Maggio D, Kovach JS, Zhang Q, Song Q et al (2018) Pharmacologic inhibition of protein phosphatase-2A achieves durable immune-mediated antitumor activity when combined with PD-1 blockade. Nat Commun 9(1):2126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR et al (2017) IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127(8):2930–2940

    Article  PubMed  PubMed Central  Google Scholar 

  129. Rossi J, Paczkowski P, Shen YW, Morse K, Flynn B, Kaiser A et al (2018) Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL. Blood 132(8):804–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA et al (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342(6161):967–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Roy S, Trinchieri G (2017) Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer 17(5):271–285

    Article  CAS  PubMed  Google Scholar 

  132. Soldati L, Di Renzo L, Jirillo E, Ascierto PA, Marincola FM, De Lorenzo A (2018) The influence of diet on anti-cancer immune responsiveness. J Transl Med 16(1):75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Liebman MN, Molinaro S (2012) Computational modeling and epidemiologic approaches: a new section of the Journal of Translational Medicine. J Transl Med 10:210

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wang E, Uccellini L, Marincola FM (2012) A genetic inference on cancer immune responsiveness. Oncoimmunology 1(4):520–525

    Article  PubMed  PubMed Central  Google Scholar 

  135. Angelova M, Mlecnik B, Vasaturo A, Bindea G, Fredriksen T, Lafontaine L et al (2018) Evolution of metastases in space and time under immune selection. Cell 175(3):751–765.e16

    Google Scholar 

  136. Botticelli A, Cerbelli B, Lionetto L, Zizzari I, Salati M, Pisano A et al (2018) Can IDO activity predict primary resistance to anti-PD-1 treatment in NSCLC? J Transl Med 16(1):219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Muller AJ, Manfredi MG, Zakharia Y, Prendergast GC (2019) Inhibiting IDO pathways to treat cancer: lessons from the ECHO-301 trial and beyond. Semin Immunopathol 41(1):41–48

    Article  CAS  PubMed  Google Scholar 

  138. Song C, Piva M, Sun L, Hong A, Moriceau G, Kong X et al (2017) Recurrent tumor cell-intrinsic and -extrinsic alterations during MAPKI-induced melanoma regression and early adaptation. Cancer Discov 7(11):1248–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Turan T, Kannan D, Patel M, Barnes MJ, Tanlimco SG, Lu R et al (2018) Immune oncology, immune responsiveness and the theory of everything. J Immunother Cancer (in press)

    Google Scholar 

  140. Abd Al Samid M, Chaudhary B, Khaled YS, Ammori BJ, Elkord E (2016) Combining FoxP3 and Helios with GARP/LAP markers can identify expanded Treg subsets in cancer patients. Oncotarget 7(12):14083–14094

    Google Scholar 

  141. Alinejad V, Dolati S, Motallebnezhad M, Yousefi M (2017) The role of IL17B-IL17RB signaling pathway in breast cancer. Biomed Pharmacother = Biomed & pharmacother 88:795–803

    Google Scholar 

  142. Moon PK, Tran S, Minhas PS (2019) Revisiting IDO and its value as a predictive marker for anti-PD-1 resistance. J Transl Med 17(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  143. Crittenden MR, Baird J, Friedman D, Savage T, Uhde L, Alice A et al (2016) Mertk on tumor macrophages is a therapeutic target to prevent tumor recurrence following radiation therapy. Oncotarget 7(48):78653–78666

    Article  PubMed  PubMed Central  Google Scholar 

  144. Hatfield SM, Sitkovsky M (2016) A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1alpha driven immunosuppression and improve immunotherapies of cancer. Curr Opin Pharmacol 29:90–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ohlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M et al (2017) Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 214(3):579–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ena Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bedognetti, D., Cesano, A., Marincola, F.M., Wang, E. (2020). The Biology of Immune-Active Cancers and Their Regulatory Mechanisms. In: Lee, P., Marincola, F. (eds) Tumor Microenvironment. Cancer Treatment and Research, vol 180. Springer, Cham. https://doi.org/10.1007/978-3-030-38862-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38862-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38861-4

  • Online ISBN: 978-3-030-38862-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics