Skip to main content

Monte Carlo Method for Electronic and Phononic Transport in Nanostructured Thermoelectric Materials

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

Given a certain material, in order to understand electronic transport in its nanostructured or highly disordered forms, one needs to move beyond the simplified analytical models for the scattering rates on structure irregularities that were described in Chap. 2. This Chapter describes the Monte Carlo method for electronic and phononic transport applied to nanostructured materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lundstrom, M.: Fundamentals of Carrier Transport. Cambridge University Press (2000)

    Google Scholar 

  2. Jacoboni, C., Lugli, P.: The Monte Carlo Method for Semiconductor Device Simulation, Computational Microelectronics (1989)

    Google Scholar 

  3. Moglestue, C.: Monte Carlo Simulation of Semiconductor Devices. Chapman and Hall (1993)

    Google Scholar 

  4. Laux, S.E., Fischetti, M.V., Frank, D.J.: Monte Carlo analysis of semiconductor devices: the DAMOCLES program. IBM J. Res. Dev. 34(4), 466–494 (1990)

    Article  CAS  Google Scholar 

  5. Foster, S.: Ph.D. thesis (2019) University of Warwick

    Google Scholar 

  6. Aksamija, Z., Knezevic, I.: Lattice thermal transport in large-area polycrystalline graphene. Phys. Rev. B 90(3), 035419 (2014)

    Article  Google Scholar 

  7. Zuverink, A.: Surface roughness scattering of electrons in bulk MOSFETS. Doctoral dissertation (2015)

    Google Scholar 

  8. Graebner, J.E., Reiss, M.E., Seibles, L., Hartnett, T.M., Miller, R.P., Robinson, C.J.: Phonon scattering in chemical-vapor-deposited diamond. Phys. Rev. B 50(6), 3702 (1994)

    Article  CAS  Google Scholar 

  9. Aksamija, Z., Knezevic, I.: Thermal transport in graphene nanoribbons supported on SiO2. Phys. Rev. B 86, 165426 (2012)

    Article  Google Scholar 

  10. Soffer, S.B.: Statistical model for the size effect in electrical conduction. J. Appl. Phys. 38(4), 1710 (1967)

    Article  CAS  Google Scholar 

  11. Mazumder, S., Majumdar, A.: Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J. Heat Transf. 123(4), 749–759 (2001)

    Article  Google Scholar 

  12. Lacroix, D., Joulain, K., Lemonnier, D.: Monte Carlo transient phonon transport in silicon and germanium at nanoscales. Phys. Rev. B 72(6), 064305 (2005)

    Article  Google Scholar 

  13. Chakraborty, D., Foster, S., Neophytou, N.: Monte Carlo phonon transport simulations in hierarchically disordered silicon nanostructures. Phys. Rev. B 98(11), 115435 (2018)

    Article  CAS  Google Scholar 

  14. Neophytou, N., Kosina, H.: Optimizing thermoelectric power factor by means of a potential barrier. J. Appl. Phys. 114(4), 044315 (2013)

    Article  Google Scholar 

  15. Thesberg, M., Pourfath, M., Neophytou, N., Kosina, H.: The fragility of thermoelectric power factor in cross-plane superlattices in the presence of non-idealities: A quantum transport simulation approach. J. Electron. Mater. 45 (3), 1584 (2015)

    Article  Google Scholar 

  16. Thesberg, M., Pourfath, M., Kosina, H., Neophytou, N.: The influence of non-idealities on the thermoelectric power factor of nanostructured superlattices. J. Appl. Phys. 118, 224301 (2015)

    Article  Google Scholar 

  17. Pop, E., Dutton, R.W., Goodson, K.E.: Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion. J. Appl. Phys. 96(9), 4998–5005 (2004)

    Article  CAS  Google Scholar 

  18. Narumanchi, S.V., Murthy, J.Y., Amon, C.H.: Comparison of different phonon transport models for predicting heat conduction. J. Heat Transf. 127, 713 (2005)

    Article  CAS  Google Scholar 

  19. Pop, E., Goodson, K.E.: Thermal phenomena in nanoscale transistors. J. Electron. Packag. 128(2), 102–108 (2006)

    Article  CAS  Google Scholar 

  20. Hao, Q., Chen, G., Jeng, M.S.: Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores. J. Appl. Phys. 106(11), 114321 (2009)

    Article  Google Scholar 

  21. Mittal, A., Mazumder, S.: Monte Carlo study of phonon heat conduction in silicon thin films including contributions of optical phonons. J. Heat Transf. 132(5), 052402 (2010)

    Article  Google Scholar 

  22. Wolf, S., Neophytou, N., Kosina, H.: Thermal conductivity of silicon nanomeshes: effects of porosity and roughness. J. Appl. Phys. 115(20), 204306 (2014)

    Article  Google Scholar 

  23. Wolf, S., Neophytou, N., Stanojevic, Z., Kosina, H.: Monte Carlo simulations of thermal conductivity in nanoporous Si membranes. J. Electron. Mater. 43(10), 3870–3875 (2014)

    Article  CAS  Google Scholar 

  24. Jeong, C., Datta, S., Lundstrom, M.: Monte Carlo study of phonon heat conduction in silicon thin films including contributions of optical phonons. J. Appl. Phys. 111, 093708 (2012)

    Article  Google Scholar 

  25. Klemens, P.G.: The thermal conductivity of dielectric solids at low temperatures. Proc. R. Soc. London, Ser. A 208, 108 (1951)

    Article  CAS  Google Scholar 

  26. Srivastava, G.: The Physics of Phonons. Adam Hilger, Bristol, UK (1990)

    Google Scholar 

  27. Han, Y.-J., Klemens, P.G.: Anharmonic thermal resistivity of dielectric crystals at low temperatures. Phys. Rev. B 48, 6033 (1993)

    Article  CAS  Google Scholar 

  28. Holland, M.G.: Analysis of lattice thermal conductivity. Phys. Rev. 132(6), 2461 (1963)

    Article  CAS  Google Scholar 

  29. Chakraborty, D., de Sousa Oliveira, L., Neophytou, N.: Enhanced phonon boundary scattering at high temperatures in hierarchically disordered nanostructures. J. Electron. Mater. 48(4), 1909–1916 (2019)

    Article  CAS  Google Scholar 

  30. Ramayya, E.B., Maurer, L.N., Davoody, A.H., Knezevic, I.: Thermoelectric properties of ultrathin silicon nanowires. Phys. Rev. B 86(11), 115328 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neophytos Neophytou .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neophytou, N. (2020). Monte Carlo Method for Electronic and Phononic Transport in Nanostructured Thermoelectric Materials. In: Theory and Simulation Methods for Electronic and Phononic Transport in Thermoelectric Materials. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-38681-8_3

Download citation

Publish with us

Policies and ethics