Skip to main content

Mathematical Tools for Controlling Invasive Species in Protected Areas

  • Chapter
  • First Online:
Mathematical Approach to Climate Change and its Impacts

Abstract

A challenging task in the management of Protected Areas is to control the spread of invasive species, either floristic or faunistic, and the preservation of indigenous endangered species, typically competing for the use of resources in a fragmented habitat. In this paper, we present some mathematical tools that have been recently applied to contain the worrying diffusion of wolf-wild boars in a Southern Italy Protected Area belonging to the Natura 2000 network. They aim to solve the problem according to three different and in some sense complementary approaches: (i) the qualitative one, based on the use of dynamical systems and bifurcation theory; (ii) the Z-control, an error-based neural dynamic approach; (iii) the optimal control theory. In the case of the wild-boars, the obtained results are illustrated and discussed. To refine the optimal control strategies, a further development is to take into account the spatio-temporal features of the invasive species over large and irregular environments. This approach can be successfully applied, with an optimal allocation of resources, to control an invasive alien species infesting the Alta Murgia National Park: Ailanthus altissima. This species is one of the most invasive species in Europe and its eradication and control is the object of research projects and biodiversity conservation actions in both protected and urban areas [11]. We lastly present, as a further example, the effects of the introduction of the brook trout, an alien salmonid from North America, in naturally fishless lakes of the Gran Paradiso National Park, study site of an on-going H2020 project (ECOPOTENTIAL).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auger, P., Bravo de la Parra, R.: Methods of aggregation of variables in population dynamics. CR Acad. Sci. Sci. dela Vie 323, 665–674 (2000)

    Google Scholar 

  2. Baker, C.M.: Target the source: optimal spatiotemporal resource allocation for invasive species control. Conserv. Lett. 10, 41–48 (2017)

    Article  Google Scholar 

  3. Baker, C.M., Bode, M.: Spatial control of invasive species in conservation landscapes. Comput. Manag. Sci. 10, 331–351 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baker, C.M., Bode, M.: Placing invasive species management in a spatiotemporal context. Ecol. Appl. 26, 712–725 (2016)

    Article  Google Scholar 

  5. Baker, C.M., Diele, F., Lacitignola, D., Marangi, C., Martiradonna, A.: Optimal control of invasive species through a dynamical systems approach. Nonlinear Anal. Real World Appl. 49, 45–70 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baker, C.M., Diele, F., Marangi, C., Martiradonna, A., Ragni, S.: Optimal spatiotemporal effort allocation for invasive species removal incorporating a removal handling time and budget. Nat. Resour. Model. 31(4), e12190 (2018)

    Article  MathSciNet  Google Scholar 

  7. Blanes, S., Diele, F., Marangi, C., Ragni, S.: Splitting and composition methods for explicit time dependence in separable dynamical systems. J. Comput. Appl. Math. 235(3), 646–659 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonnans, J.F., Varin, J.L.: Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control. Numer. Math. 103, 1–10 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brown, D.R., Stouffer, P.C., Strong, C.M.: Movement and territoriality of wintering Hermit Thrushes in southeastern Louisiana. Wilson Bull. 112, 347–353 (2000)

    Article  Google Scholar 

  10. Burnett, K., Pongkijvorasin, S., Roumasset, J.: Species invasion as catastrophe: the case of the brown tree snake. Environ. Resour. Econ. 51, 241–254 (2012)

    Article  Google Scholar 

  11. Casella, F., Vurro, M.: Ailanthus altissima (tree of heaven): spread and harmfulness in a case study urban area. Arboricult. J.: Int. J. Urban For. 35(3), 172–181 (2013). https://doi.org/10.1080/03071375.2013.852352

  12. Celesti-Grapow, L., Pretto, F., Carli, E., Blasi, C.: Flora vascolare alloctona e invasiva delle regioni d’Italia [Allochthonous and Invasive Vascular Flora of the Regions of Italy]. Casa Editrice Universitaria La Sapienza, Rome (2010)

    Google Scholar 

  13. Chalak, M., Pannell, D.J.: Optimising control of an agricultural weed in sheep-production pastures. Agric. Syst. 109, 1–8 (2012)

    Article  Google Scholar 

  14. Chalak-Haghighi, M., van Ierland, E.C., Bourdot, G.W., Leathwick, D.: Management strategies for an invasive weed: a dynamic programming approach for Californian thistle in New Zealand. N. Z. J. Agric. Res. 51, 409–424 (2008)

    Article  Google Scholar 

  15. Chyba, M., Hairer, E., Vilmart, G.: The role of symplectic integrators in optimal control. Optim. Control Appl. Methods 30, 367–382 (2009)

    Article  MathSciNet  Google Scholar 

  16. Colautti Robert, I., MacIsaac, H.J.: A neutral terminology to define invasive species. Divers. Distrib. 10(2), 135–141 (2004)

    Article  Google Scholar 

  17. Diele, F., Marangi, C.: Positive symplectic integrators for predator-prey dynamics. Discrete Contin. Dynam. Syst. B 23(7), 2661 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Diele, F., Marangi, C., Ragni, S.: Steady-state invariance in high-order Runge-Kutta discretization of optimal growth models. J. Econ. Dyn. Control 34, 1248–1259 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Diele, F., Marangi, C., Ragni, S.: Exponential Lawson integration for nearly Hamiltonian systems arising in optimal control. Math. Comput. Simul. 81(5), 1057–1067 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Diele, F., Marangi, C., Ragni, S.: Implicit-symplectic partitioned (IMSP) Runge-Kutta schemes for predator-prey dynamics. In: AIP Conference Proceedings, vol. 1479, no. 1. American Institute of Physics (2012)

    Google Scholar 

  21. Diele, F., Marangi, C., Ragni, S.: IMSP schemes for spatially explicit models of cyclic populations and metapopulation dynamics. Math. Comput. Simul. 100, 41–53 (2014)

    Article  MathSciNet  Google Scholar 

  22. Diele, F., Garvie, M.R., Trenchea, C.: Numerical analysis of a first-order in time implicit symplectic scheme for predator prey systems. Comput. Math. Appl. 74(5), 948–961 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Eby, L.A., Roach, W.J., Crowder, L.B., Stanford, J.A.: Effects of stocking-up freshwater food webs. Trends Ecol. Evol. 21, 576–584 (2006)

    Article  Google Scholar 

  24. European Commission Staff, Working Document Impact Assessment Accompanying the Document Proposal for a Council and European Parliament Regulation on the prevention and management of the introduction and spread of invasive alien species. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52013SC0321 (2013)

  25. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  26. Ficetola, G., Bonardi, A., Mairota, P., Leronni, V., Padoa-Schioppa, E.: Predicting wild boar damages to croplands in a mosaic of agricultural and natural areas. Curr. Zool. 60, 170–179 (2014)

    Article  Google Scholar 

  27. Garvie, M.R., Trenchea, C.: Optimal control of a nutrient-phytoplankton-zooplankton-fish system. SIAM J. Control Optim. 46(3), 775–791 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1997)

    Google Scholar 

  29. Guo, D., Zhang, Y.: Neural dynamics and Newton-Raphson iteration for nonlinear optimization. J. Comput. Nonlinear Dyn. 9(2), 021016 (2014)

    Article  Google Scholar 

  30. Hager, W.W.: Runge-Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87, 247–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer Series in Computational Mathematics, vol. 31. Springer, Berlin (2006)

    Google Scholar 

  32. Hutchings, J.A.: Adaptive phenotypic plasticity in brook trout, Salvelinus fontinalis, life histories. Ecoscience 3, 25–32 (1996)

    Article  Google Scholar 

  33. Kaczensky, P., Chapron, G., von Arx, M., Huber, D., Andrn, H., Linnell, J.: Status, Management and Distribution of Large Carnivores ‘Bear, Lynx, Wolf and Wolverine’ in Europe, European Commission (2013, March)

    Google Scholar 

  34. Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  35. Lacitignola, D., Diele, F., Marangi, C.: Dynamical scenarios from a two-patch predator prey system with human control - implications for the conservation of the wolf in the Alta Murgia National Park. Ecol. Model. 316, 28–40 (2015)

    Article  Google Scholar 

  36. Lacitignola, D., Diele, F., Marangi, C., Provenzale, A.: On the dynamics of a generalized predator-prey system with Z-type control. Math. Biosci. 280, 10–23 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Models. Chapman & Hall/CRC, London (2007)

    MATH  Google Scholar 

  38. Leonard, D., Van Long, N.: Optimal Control Theory and Static Optimization in Economics. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  39. Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Birkhauser, Boston (2001)

    Google Scholar 

  40. Lions, J.L.: Optimal Control of Systems Governed by Partial Equations. Springer, Berlin (1970)

    Google Scholar 

  41. Magnea, U., Sciascia, R., Paparella, F., Tiberti, R., Provenzale, A.: A model for high-altitude alpine lake ecosystems and the effect of introduced fish. Ecol. Model. 251, 211–220 (2013)

    Article  Google Scholar 

  42. Marescot, L., Chapron, G., Chades, I., Fackler, P.L., Duchamp, C., Marboutin, E., Gimenez, O.: Complex decisions made simple: a primer on stochastic dynamic programming. Methods Ecol. Evol. 4(9), 827–884 (2013)

    Article  Google Scholar 

  43. Marinoschi, G., Martiradonna, A.: Fish populations dynamics with nonlinear stock-recruitment renewal conditions. Appl. Math. Comput. 277, 101–110 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Martiradonna, A., Diele, F., Marangi, C.: Analysis of state-control optimality system for invasive species management. In: Analysis, Probability, Applications, and Computation, pp. 3–13. Birkhäuser, Cham (2019)

    Google Scholar 

  45. Materassi, M., Innocenti, G., Berzi, D., Focardi, S.: Kleptoparasitism and complexity in a multi-trophic web. Ecol. Complex. 29, 49–60 (2017)

    Article  Google Scholar 

  46. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1973)

    Google Scholar 

  47. McGeoch, M.A., Butchart, S.H.M., Spear, D., Marais, E., Kleynhans, E.J., Symes, A., Chanson, J., Hoffmann, M.: Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. Divers. Distrib. 16(1), 95–108 (2010)

    Article  Google Scholar 

  48. Monitoraggio dei carnivori nel parco nazionale dell’Alta Murgia primi risultati. Parco nazionale dell’Alta Murgia, Servizio Tecnico (2010)

    Google Scholar 

  49. Murray, J.D.: Mathematical Biology I. An Introduction. Springer, Berlin (2002)

    Google Scholar 

  50. Odom, D.I.S., Cacho, O.J., Sinden, J.A., Griffith, G.R.: Policies for the management of weeds in natural ecosystems: the case of scotch broom (Cytisus scoparius, L.) in an Australian national park. Ecol. Econ. 44, 119–135 (2003)

    Google Scholar 

  51. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelize, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)

    Google Scholar 

  52. Sanz-Serna, J.M.: Symplectic Runge-Kutta schemes for adjoint equations, automatic differentiation, optimal control, and more. Siam Rev. 58, 3–33 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Simberloff, D.: We can eliminate invasions or live with them. Successful management projects. Biol. Invasions 11(1), 149–157 (2009)

    MathSciNet  Google Scholar 

  54. Spring, D., Cacho, O.J.: Estimating eradication probabilities and trade-offs for decision analysis in invasive species eradication programs. Biol. Invasions 17(1), 191–204 (2014)

    Article  Google Scholar 

  55. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Studies in Nonlinearity, 1st edn. Westview Press, Boulder (2001)

    Google Scholar 

  56. Tiberti, R., Acerbi, E., Iacobuzio, R.: Preliminary studies on fish capture techniques in Gran Paradiso alpine lakes: towards an eradication plan. J. Mt. Ecol. 9, 61–74 (2013)

    Google Scholar 

  57. Turchin, P.: Complex Population Dynamics: A Theoretical/Empirical Synthesis. Monograph in Population Biology. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  58. Zhang, Y., Li, Z.: Zhang neural network for online solution of time-varying convex quadratic program subject to time-varying linear-equality constraints. Phys. Lett. A 373(18), 1639–1643 (2009)

    Article  MATH  Google Scholar 

  59. Zhang, Y., Yi, C.: Zhang Neural Networks and Neural-Dynamic Method. Nova Science Publishers, New York (2011)

    Google Scholar 

  60. Zhang, Y., Yan, X., Liao, B., Zhang, Y., Ding, Y.: Z-type control of populations for Lotka-Volterra model with exponential convergence. Math. Biosci. 27, 15–23 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been carried out within the H2020 project ‘ECOPOTENTIAL: Improving Future Ecosystem Benefits Through Earth Observations’, coordinated by CNR-IGG (http://www.ecopotential.project.eu). The project has received funding from the European Union’s Horizon 2020 research and innovation programme (grant agreement No 641762).

This work has been carried out within the LIFE Alta Murgia project (LIFE12 BIO/IT/000213—http://lifealtamurgia.eu/en/) coordinated by CNR-ISPA, titled Control and eradication of the invasive and exotic plant species Ailanthus altissima in the Alta Murgia National Park, funded by the European Commission under the LIFE Programme. D.L. research work has been performed under the auspices of the Italian National Group for Mathematical Physics (GNFM-INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmela Marangi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marangi, C. et al. (2020). Mathematical Tools for Controlling Invasive Species in Protected Areas. In: Cannarsa, P., Mansutti, D., Provenzale, A. (eds) Mathematical Approach to Climate Change and its Impacts. Springer INdAM Series, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-38669-6_8

Download citation

Publish with us

Policies and ethics