Skip to main content

Micropitting Load Capacity of Spur and Helical Gears

  • Chapter
  • First Online:
Book cover Gears

Part of the book series: Springer Series in Solid and Structural Mechanics ((SSSSM,volume 11))

  • 1192 Accesses

Abstract

In this chapter, a general survey is first done on the micropitting damage of spur and helical gears, which manifests itself to the roughness scale. The mechanism that trigger this type of damage as well as the characteristics that distinguish it from those typical of macropitting (the classical pitting ) are described. The problem to be solved for a reliable calculation procedure of micropitting load carrying capacity of gears are then analyzed and, to this end, the ideal characteristics of a general micropitting model are described. An interesting tribological-dynamic analytical model for cylindrical spur gears is then described, which also consists of a three-dimensional analytical-numerical contact sub-model and a multiaxial fatigue sub-model. The procedure for calculating the surface durability of spur and helical gears in accordance with the ISO standards is described, highlighting when deemed necessary how the formulae used by the same ISO are anchored to the theoretical bases previously discussed. Finally, for a better understanding of micropitting mechanisms, attention is drawn to the need to introduce, instead of traditional profile parameters , the areal field parameters that best describe the topography and texture of surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AGMA 925-A03:2003 Effect of lubrication on gear surface distress

    Google Scholar 

  • Abbott EJ, Firestone FA (1933) Specifying surface quality: a method based on accurate measurement and comparison. Mech Eng 55:569–572

    Google Scholar 

  • Al-Tubi IS, Long H (2013) Prediction of wind turbine gear micropitting under variable load and speed conditions using ISO/TR 15144-1:2010. Proc Inst Mech Eng, Part C: J Mech Eng Sci 227(9):1898–1914

    Article  Google Scholar 

  • Al-Tubi IS, Long H, Zhang J, Shaw B (2015) Experimental and analytical study of gear micropitting initiation and propagation under varying load conditions. Wear 328–329:8–16

    Article  Google Scholar 

  • Aver’yanova IO, Bogomolov DY, Porishin VV (2017) ISO 25178 standard for three-dimensional parametric assessment of surface texture. Russ Eng Res 37(6):513–516

    Article  Google Scholar 

  • Barber JR (1992) Elasticity. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  • Bargis E, Garro A, Vullo V (1980a) Crankshaft design and evaluation. Part 1—Critical analysis and experimental evaluation of current methods. In: ASME, reliability, stress analysis and failure prevention methods in mechanical design. New York, pp 181–201

    Google Scholar 

  • Bargis E, Garro A, Vullo V (1980b) Crankshaft design and evaluation. Part 2—a modern design method: modal analysis. In: ASME, reliability, stress analysis and failure prevention methods in mechanical design. New York, pp 203–211

    Google Scholar 

  • Bargis E, Garro A, Vullo V (1980c) Crankshaft design and evaluation. Part 3—a modern design method: direct integration. In: ASME, reliability, stress analysis and failure prevention methods in mechanical design. New York, pp 213–218

    Google Scholar 

  • Bathgate J, Kendall RB, Moorhouse P (1970) Thermal aspects of gear lubrication. Wear 15(2):117–129

    Article  Google Scholar 

  • Becker AA (1992) The boundary element method in engineering: a complete course. McGraw-Hill Book Company, New York

    Google Scholar 

  • Benson R, Sroka GJ, Bell M (2013) The effect of the roughness profile on micropitting. GearSolutions, March pp 47–53

    Google Scholar 

  • Bernardini C, Ragnisco O, Santini PM (1993) Metodi matematici della fisica. Carocci Editore SpA, Roma

    Google Scholar 

  • Bernasconi A, Papadopulos IV (2005) Efficiency of algorithms for shear stress amplitude calculation in critical plane class fatigue criteria. Comput Mater Sci 34:355–368

    Article  Google Scholar 

  • Berthe D, Flamand L, Foucher D, Godet M (1980) Micro-pitting in Hertzian contacts, Transactions of the ASME. J Lubr Technol 102:478–489

    Article  Google Scholar 

  • BGA-DU P602 (2008) Gear micropitting procedure. Test procedure for the evaluation of micropitting performance of spur and helical gears

    Google Scholar 

  • Blateyron F (2013) The areal field parameters. In: Leach Richard (ed) Characterization of areal surface texture. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Blok H (1937a) Theoretical study of temperature rise at surfaces of actual contact under oiliness lubricating conditions. Proc Inst Mech Eng (General Discussion on Lubrication) 2:222–235

    Google Scholar 

  • Blok H (1937b) Les températures de surface dans des conditions de graissage sous pressions extrêmes. In: Proceedings of the 2nd world petroleum congress, Paris, Section IV, vol. III, pp 151–182

    Google Scholar 

  • Blok H (1937c) Measurements of temperature flashes on gear teeth under extreme pressure conditions. Inst Mech Eng (Proceedings of the general discussion on lubrication) 2:18–22

    Google Scholar 

  • Blok H (1937d) Surface temperature measurements on gear teeth under extreme pressure lubricating conditions. Power Transm, 653–656

    Google Scholar 

  • Blok H (1940) Fundamental mechanical aspects of boundary lubrication. SAE Trans 35:54–68

    Google Scholar 

  • Blok H (1969) The thermal-network method for predicting bulk temperatures in gear transmissions. In: Proceedings of the 7th round-table discussion on marine reduction gears, stat-laval, Finspong, Sweden, pp 3–25 and 26–32

    Google Scholar 

  • Boussinesq J (1885) Application des Potentiels à l’étude de l’équilibre et du mouvement des solides élastiques avec des notes étendues sur divers points de physique mathématique et d’analyse. Gauthier-Villars, Paris

    MATH  Google Scholar 

  • Brandão JA, Scabra JHO, Castro MJD (2010) Gear micropitting: model and validation. WIT Trans Eng Sci 66:25–36

    Article  Google Scholar 

  • Bronshtein IN, Semendyayev KA (1997) Handbook of mathematics, 3rd edn. Springer-Verlag, New York

    MATH  Google Scholar 

  • Buckingham E (1949) Analytical mechanics of gears. McGraw-Hill Book Company, New York

    Google Scholar 

  • Buzdygon KJ, Cardis AB (2004) A short procedure to evaluate micropitting using the new AGMA designed gears. AGMA Fall Tech Meet

    Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Cauchy A-L (1828) Sur les équations qui expriment les conditions d’équilibre ou les lois du mouvement intérieur d’un corps solide élastique ou non élastique. Exerc. de Mathématiques 3:160–187

    Google Scholar 

  • Cerruti V (1881–82) Ricerche intorno all’equilibrio dei corpi elastici isotropi, Atti della Reale Accademia dei Lincei, Memorie della Classe di Scienze Fisiche, Matematiche e Naturali, Serie 3, Annata 279, vol. 13, pp 81–122; reprint with the same title, Roma, Salviucci, 1882

    Google Scholar 

  • Chang WR, Etsion I, Bogy DB (1987) An elastic-plastic model for the contact of rough surfaces. J Tribol 109(2):257–263

    Article  Google Scholar 

  • Clark A, Evans HP, Snidle RW (2015) Understanding micropitting in gears. In: Part C: J Mech Eng Sci (Proceedings of the institution of mechanical engineers)

    Google Scholar 

  • Clark A, Weets IJJ, Snidle RW, Evans HP (2016) Running-in and micropitting behavior of steel surfaces under mixed lubrication conditions. Tribol. Int, 101:59–68

    Google Scholar 

  • Conry TF, Seireg A (1973) A mathematical programming technique for the evaluation of load distribution and optimal modification for gear systems. J Eng Ind 95:1115–1122

    Article  Google Scholar 

  • Cook RD (1981) Concepts and applications of finite element analysis, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Démidovitch B, Maron I (1973) Éléments de Calcule Numérique. Éditions MIR-Moscou, Moscou

    MATH  Google Scholar 

  • Den Hartog JP (1985) Mechanical vibrations, 4th edn. Dover Publications Inc, New York

    MATH  Google Scholar 

  • Dowson D, Higginson GR (1977) Elastohydrodynamic lubrication, 2nd edn. Pergamon, London

    Google Scholar 

  • Ehret P, Dowson D, Taylor CM (1998) On the lubricant transport conditions in elastohydrodynamic conjunctions. Proc R Soc Lond, Series A, 454

    Google Scholar 

  • Evans HP, Snidle RW, Sharif KJ (2011) Analysis of micro-elastohydrodynamic lubrication and surface fatigue in gear micropitting tests. In: ASME proceedings of 11th international power transmission and gearing conference, and 13th international conference on advanced vehicle and tire technologies, Washington, DC, USA, August 28–31, Vol. 8, Paper No. DETC2011-47714, pp 585–591

    Google Scholar 

  • Evans HP, Snidle RW, Sharif KJ, Shaw BA, Zhang J (2013) Analysis of micro-elastohydrodynamic lubrication and prediction of surface fatigue damage in micropitting tests on helical gears. J Tribol 135(1)

    Google Scholar 

  • Fatemi A, Shamsaei N (2011) Multiaxial fatigue: an overview and some approximation models for life estimation. Int J Fatigue 33(8):948–958

    Article  Google Scholar 

  • Fatemi A, Socie DF (1988) A critical plane to multiaxial fatigue damage including out-of-phase loading. Fatigue Fracture Eng Mater Struct 11(3):149–165

    Article  Google Scholar 

  • Favata A (2012) On the Kelvin problem. J Elast 109(2):189–204

    Article  MathSciNet  MATH  Google Scholar 

  • Fenner RT (1986) Engineering elasticity: application of numerical and analytical techniques. Ellis Horwood Limited Publishers, Chichester

    Google Scholar 

  • Ferrari C, Romiti A (1966) Meccanica applicata alle macchine. Torino: Unione Tipografica–Editrice Torinese (UTET)

    Google Scholar 

  • Flamant A-A (1892) Sur la répartition des pressions dans un solide rectangulaire chargé trnsversalement. Comptes Rendus des Séances de l’Academie des Sciences, Paris 114:1465–1468

    MATH  Google Scholar 

  • FVA-Information Sheet 54/7 (1993) Test procedure for the investigation of the micropitting capacity gear lubricants

    Google Scholar 

  • Garro A, Vullo V (1979) Acoustic problems of vehicle transmission. Nauka I Motorna Vozila ’79, Bled, Slovenija, Jugoslavija, June 4–7

    Google Scholar 

  • Gauss CF (1815) Methodus nova integralium valores per approximationem inveniendi: auctore Carolo Friderico Gauss. H. Dicterich, Gottingae

    Google Scholar 

  • Gladwell GML (1980) Contact problems in the classical theory elasticity, Sijthoff & Noordhoff International Publishers B.V., Alphen aan den Rijn, the Netherlands Germantown, Maryland, USA

    Google Scholar 

  • Goglia PR, Cusano C, Conry TF (1984a) The effects of surface irregularities on the elastohydrodynamic lubrication of sliding line contacts. Part I-Single IrregulIties, ASME J Tribol 106(1):104–112

    Article  Google Scholar 

  • Goglia PR, Cusano C, Conry TF (1984b) The effects of surface irregularities on the elastohydrodynamic lubrication of sliding line contacts. Part II-Wavy SurfS, ASME J Tribol 106(1):113–119

    Article  Google Scholar 

  • Greco A, Sheng S, Keller J, Erdemir A (2013) Material wear and fatigue in wind turbine systems. Wear 302:1583–1591

    Article  Google Scholar 

  • Greenwood JA, Tripp JH (1970–71) The contact of two nominally flat rough surfaces. Proc Inst Mech Eng 185(48/71): 625–634

    Article  Google Scholar 

  • Greenwood JA, Williamson, J-BP (1966) Contact of nominally flat surfaces. In: Proc R Soc Lond, Ser A, Math Phys Sci 295(1442):300–319

    Google Scholar 

  • Gupta PK (1984) Advanced dynamics of rolling elements. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  • Hein M, Stahl K, Tobie T (2017) Practical use of micropitting test results according to FVA 54/7 for calculation of micropitting load capacity according to ISO/TR 15144-1. In: International conference on gears Sept. 13-15, 2017, Technische Universität München (TUM), Garching/Munich, Germany

    Google Scholar 

  • Henrici P (1988) Applied and computational complex analysis. Power series, integration, conformed mapping, vol 1. John Wiley & Sons, Inc, Location of Zeros, New York

    Google Scholar 

  • Höhn B-R, Oster P, Emmert S (1996) Micropitting in case-carburized gears - FZG micropitting test. In: International Conference on Gears, Dresden, Germany, VDI Berichte Nr. 1230, pp 331–334

    Google Scholar 

  • Incropera FP, DeWitt DP, Bergmann TL, Lavine AS (2006) fundamentals of heat and mass transfer, 6th edn. John Wiley & Sons Inc, New York

    Google Scholar 

  • ISO 12085:1996 Geometrical product specifications (GPS)—surface texture: Profile method—motif parameters

    Google Scholar 

  • ISO 1302:2002 Geometrical product specifications (GPS)—indication of surface texture in technical product documentation

    Google Scholar 

  • ISO 1328-1:2013, Cylindrical gears—ISO system of flank tolerance classification—part 1: definitions and allowable values of deviations relevant to flanks of gear teeth

    Google Scholar 

  • ISO 13565-1:1996, Geometrical product specifications (GPS), surface texture: profile method; surfaces having stratified functional properties—part. 1: filtering and general measurement conditions

    Google Scholar 

  • ISO 13565-2:1996 Geometrical product specifications (GPS)—surface texture: profile method; surfaces having stratified functional properties—part 2: height characterization using the linear material ratio curve

    Google Scholar 

  • ISO 13565-3:1998 Geometrical product specifications (GPS)—surface texture: profile method; surfaces having stratified functional properties—part 3: height characterization using the material probability curve

    Google Scholar 

  • ISO 16610-1:2015, Geometrical product specifications (GPS)—filtration—part 1: overview and basic concepts

    Google Scholar 

  • ISO 4288:1996 Geometrical product specifications (GPS)—surface texture: profile method—rules and procedures for the assessment of surface texture

    Google Scholar 

  • ISO 4287:1997 Surface roughness testing: surface texture: profile method—terms, definitions and surface texture parameters

    Google Scholar 

  • ISO 53:1998 Cylindrical gears for general and heavy engineering—standard basic rack tooth profile

    Google Scholar 

  • ISO 25178-2:2012 Geometrical product specifications (GPS)—surface texture: areal-part 2: terms, definitions and surface texture parameters

    Google Scholar 

  • ISO 25178-3:2011 Geometrical product specifications (GPS)—surface texture: areal—part 3: specifications operators

    Google Scholar 

  • ISO/TS 6336-22:2018 Calculation of load capacity of spur and helical gears—part 22: calculation of micropitting load capacity

    Google Scholar 

  • ISO/TS 6336-31:2018(E) Calculation of load capacity of spur and helical gears—part 31: calculation examples of micropitting load capacity

    Google Scholar 

  • Jackson RL, Green I (2011) On the modeling of elastic contact between rough surfaces. Tribol Trans 54:300–314

    Article  Google Scholar 

  • Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge, United Kingdom

    Book  MATH  Google Scholar 

  • Karas F. (1941) Elastische formänderung und lastverteilung beim doppeleingriff gerader stirnradzähne, VDI—forschungheft 406, B, Bd. 12

    Google Scholar 

  • Kissling U. (2012) Application of the first international calculation method for micropitting. Gear Technol 54–60

    Google Scholar 

  • Leach RK (2009) Fundamental principles of engineering nanometrology. Elsevier, Amsterdam

    Google Scholar 

  • Li S, Kahraman A (2010a) A transient mixed elastohydrodynamic lubrication model for spur gear pair. ASME J Tribol 132(1), 011501-1-9

    Google Scholar 

  • Li S, Kahraman A (2010b) Prediction of spur gear mechanical power losses using a transient elastohydrodynamic lubrication model. Tribol Trans 53(4):554–563

    Article  Google Scholar 

  • Li S, Kahraman A (2011a) A fatigue model for contacts under mixed elastohydrodynamic lubrication condition. Int J Fatigue 33(3):427–436

    Article  Google Scholar 

  • Li S, Kahraman A (2011b) Influence of dynamic behavior on elastohydrodynamic lubrication of spur gears. Proc Inst Mech Eng, Part J, J Eng Tribol 225:740–753

    Article  Google Scholar 

  • Li S, Kahraman A (2013a) A physics-based model to predict micro-pitting lives of lubricated point contacts. Int J Fatigue 47:205–215

    Article  Google Scholar 

  • Li S, Kahraman A (2013b) Micro-pitting fatigue lives of lubricated point contacts: Experiments and model validation. Int J Fatigue 48:9–18

    Article  Google Scholar 

  • Li S, Kahraman A (2013c) A tribo-dynamic model for a spur gear pair. J Sound Vib 332:4963–4978

    Article  Google Scholar 

  • Li S, Kahraman A (2014) A micro-pitting model for spur gear contacts. Int J Fatigue 59:224–233

    Article  Google Scholar 

  • Li S, Kahraman A, Klein M (2012) A Fatigue model for spur gear contacts operating under mixed elastohydrodynamic lubrication conditions. ASME J Mech Des 134(4):041007-1-11

    Google Scholar 

  • Liu Y, Mahadevan S (2007) A unified multiaxial fatigue damage model for isotropic and anisotropic materials. Int J Fatigue 29:347–359

    Article  MATH  Google Scholar 

  • Liu H, Lohner T, Jurkschat T, Stahl K (2018) Detailed investigation on the oil flow on dip-lubricant gearboxes by the finite volume GFD method. Lubricants 6:47

    Article  Google Scholar 

  • Liu H, Liu H, Zhu C, Zhou Y (2019) A review on micropitting studies of steel gears. Coatings 9(1):42

    Article  Google Scholar 

  • Lo CC (1969) Elastic contact of rough cylinders. Int J Mech Sci 11(1), 105–106, IN7-IN8, 107–115

    Article  Google Scholar 

  • Long H, Al-Tubi IS, Martinze MTM (2015) Analytical and experimental study of gear surface micropitting due to variable loading. Appl Mech Mater 750:96–103

    Article  Google Scholar 

  • Love AEH (1944) A treatise on the mathematical theory of elasticity, 4th edn. Dover Publications, New York

    MATH  Google Scholar 

  • Manin L, Play D (1999) Thermal behavior of power gearing transmission, numerical prediction, and influence of design parameters, ASME. J Tribol 121:693–702

    Article  Google Scholar 

  • McGrew JM, Gu A, Cheng HS, Murray SF (1970) Elastohydrodynamic lubrication—preliminary design manual, U.S. Air force technical report # AFAPL-TR-70-27, air force aero-propulsion laboratory, air force systems command, Wright-Patterson Air Force Base, Ohio

    Google Scholar 

  • Milovanović GV (2016) Generalized gaussian quadratures for integrals with logarithmic singularity. Filomat 30(4):1111–1126

    Article  MathSciNet  MATH  Google Scholar 

  • Moorthy B, Shaw BA (2013) An observation on the initiation of micro-pitting damage in as-ground and coated gears during contact fatigue. Wear 297(1):878–884

    Article  Google Scholar 

  • Morales-Èspejel GE, Rycerz P, Kadiric A (2018) Prediction of micropitting damage in gear teeth contacts considering the concurrent effects of surface fatigue and mild wear. Wear 398–399:99–115

    Article  Google Scholar 

  • Moser W, Duenser C, Beer G (2004) Mapped infinite elements for three-dimensional multi-region boundary element analysis. Int J Numer Meth Eng 61(3):317–328

    Article  MATH  Google Scholar 

  • Naveros I, Ghiaus C, Ordoñez J, Ruiz DP (2016) Thermal networks considering graph theory and thermodynamics. In: Proceedings of the 12th international conference on heat transfer, fluid mechanics and thermodynamics, Costa del Sol, Spain, 11–13 July, pp 1568–1573

    Google Scholar 

  • Olver AV, Spikes HA, MacPherson PB (1986) Wear in rolling contacts. Wear 112(2):121–144

    Article  Google Scholar 

  • Oster P (1982) Beanspruchung der Zahnflanken unter Bedingungen der Elastohydrodynamic, Dissertation Technische Universität München, Forschungsheft/Forschungsvereinigung Antriebstechnik, vol. 131, Frankfurt, M, Frankfurt A.M

    Google Scholar 

  • Ozguven HN, Houser DR (1988) Mathematical models used in gear dynamics—a review. J Sound Vib 121:383–411

    Article  Google Scholar 

  • Ramdan RD, Setiawan R, Sasmita F, Suratman R, Taufiqulloh T (2018) Determination on damage mechanism of the planet gear of heavy vehicle final drive. IOP Conf Ser, Mater Sci Eng 307:1–7

    Google Scholar 

  • Ree T, Eyring H (1955a) Theory of non-newtonian flow. I. solid plastic system. J Appl Phys 26(7):793–800

    Article  MATH  Google Scholar 

  • Ree T, Eyring H (1955b) Theory of non-newtonian flow. II? solution system of high polymers. J Appl Phys 26(7):800–809

    Article  MATH  Google Scholar 

  • Reynolds O (1876) On rolling friction. Philos Trans R Soc Lond 166:155–171

    Google Scholar 

  • Rycerz P, Kadiric A (2019) The influence of slide-roll ratio on the extend of micropitting damage in rolling-sliding contacts pertinent to gear applications. Tribol Lett 67(2):1

    Article  Google Scholar 

  • Sadeghi F, Jalalahmadi B, Slak TS, Raje N, Arakere NK (2009) A review of rolling contact fatigue. J Tribol 141:041403-1–04140304140315

    Google Scholar 

  • Sheng S Ed (2010) Wind turbine micropitting workshop: a recap. National Renewable Energy Laboratory, Technical Report NREL/TP-500–46572, Febr

    Google Scholar 

  • Shotter BA (1981) Micropitting: its characteristics and implications on the test requirements of gear oils. In: Performance testing of gear oils and transmission fluids, Institute of Petroleum, pp 53–59 and 320–323

    Google Scholar 

  • Smirnov V (1975) Cours de Mathématiques Supérieurs. Tome IV, Première partie, MIR Éditions de Moscou, Moscou

    Google Scholar 

  • Sneddon IN (1974) The use of integral transforms, TMH edn. Tata McGraw-Hill Publishing Company Ltd, New Delhi

    MATH  Google Scholar 

  • Snidle RW, Evans HP, Alanou MP, Holmes MJA (2003) The control and reduction of wear in military platforms. Williamsburg, USA, 7–9 June also published in RTO-AVT-190

    Google Scholar 

  • Socie DF, Marquis G (1999) Multiaxial fatigue, R-234. SAE International Publisher, New York

    Book  Google Scholar 

  • Tanaka F, Edwards SF (1992) Viscoelastic properties of physically crosslinked networks. 1. Transient network theory, Macromolecules, 25(5):1516–1523

    Article  Google Scholar 

  • Theißen J (1998) Eignungsnachweise von Schmierölen für Industriegetriebe, 11th International Colloquium, 13–15.1.1998, Technische Akademie Esslingen

    Google Scholar 

  • Thomson W, Lord Kelvin - (1848) A note on the integration of the equation of the equilibrium of an elastic solid. Camb Dublin Math J 3:87–89

    Google Scholar 

  • Timoshenko S, Goodier JN (1951) Theory of elasticity. McGraw-Hill Book Company Inc, New York

    MATH  Google Scholar 

  • Wang S, Cusano C, Conry TF (1991) Thermal analysis of elastohydrodynamic lubrication of line contacts using the ree-eyring fluid model. Trans ASME, J Tribol 113:232–244

    Article  Google Scholar 

  • Wang J, Li R, Peng X (2003) Survey of nonlinear vibration of gear transmission systems. ASME, Applied Mechanics Reviews 56(3):309–329

    Article  Google Scholar 

  • Warburton GB (1976) The dynamical behaviour of structures, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  • Whittaker ET, Watson GN (1990) A course in modern analysis, 4th edn. Cambridge University Press, Cambridge, England

    MATH  Google Scholar 

  • Yastrebov VA (2013) Numerical methods in contact mechanics. John Wiley&Sons, New York

    Book  MATH  Google Scholar 

  • Yastrebov VA, Anciaux G, Molinari J-F (2014) From infinitesimal to full contact between rough surfaces: evolution of the contact area, arXiv: 1401.3800v1, [physics.class-ph] 16 Jan

    Google Scholar 

  • Yastrebov VA, Anciaux G, Molinari J-F (2016) On the accurate computation of the true contact-area in mechanical contact of random rough surfaces. Tribology International, vol. 114

    Google Scholar 

  • Yu Z-Y, Zhou S-P, Liu Q, Liu Y (2017) Multiaxial fatigue damage parameter and life prediction without any additional material constants, Materials, MDPI Basel Switzerland, 10(8)

    Article  Google Scholar 

  • Zhou Y, Zhu C, Liu H (2019) A micropitting study considering rough sliding and mild wear. Coatings 9:639–653

    Article  Google Scholar 

  • Zhu D (2007) On some aspects of numerical solutions of thin-film and mixed elastohydrodynamic lubrication. Proc Inst Mech Eng, Part J, J Eng Tribol 221(5):561–579

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Vullo .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vullo, V. (2020). Micropitting Load Capacity of Spur and Helical Gears. In: Gears. Springer Series in Solid and Structural Mechanics, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-38632-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38632-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38631-3

  • Online ISBN: 978-3-030-38632-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics