Skip to main content

Endophytic Microbes from Medicinal Plants and Their Secondary Metabolites for Agricultural Significances

  • Chapter
  • First Online:
Plant Microbiomes for Sustainable Agriculture

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 25))

Abstract

Endophytes constitute an important component of microbial diversity since 20 years, remarkable progress in the field revealed the significance of endophytic microorganisms. Endophytic fungi are an unexplored group of organisms that has huge potential for innovative pharmaceutical substances; they are established as anticancer, antioxidants, antifungal, and anti-inflammatory. Likewise in recent years, incredible progress was made in developing them as therapeutic molecules against diverse ailments. In recent years, more studies are warranted in bioprospecting new endophytic microorganisms and their applications. Bacterial and fungal endophytes ubiquitously reside in internal tissue of living plants. Endophytic fungi distributed out from tropical region to arctic region, possess vast potential in terms of secondary metabolite production. It is pertinent to know that the various bioactive indispensable compounds evaluated by these endophytic fungi are host-specific. They are very significant in augmenting the adaptability of the endophyte and its host plants for instance biotic and abiotic stress tolerance. The ensuing effect is to produce metabolites either primary or secondary that are obliging for fungi themselves, the host plant in addition to the human race thereof. This chapter primarily emphasizes on the ecology, colonization, biodiversity, secondary metabolites from endophytic fungal cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berde CV (2015) Bioprospecting of endophytes of medicinal plants. J Pharma Biol Sci 3:210–211

    Google Scholar 

  • Brooks DS, Gonzales CF, Appel DN, Filer TH (1994) Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biol Cont 4:373–381

    Article  Google Scholar 

  • Calhoun LA, Findlay JA, Miller DJ, Whitney NJ (1992) Metabolites toxic to spruce budworm from balsam fir needle endophytes. Mycological Res 96:281–286

    Article  Google Scholar 

  • Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robinson R, Condron MA, Teplow DB, Stevens D, Yaver D (2002) Mumumbicins, wide spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148:2675–2685

    Article  CAS  PubMed  Google Scholar 

  • Catalán AI, Ferreira F, Gill PR, Batista S (2007) Production of polyhydroxyalkanoates by Herbaspirillum seropedicae grown with different sole carbon sources and on lactose when engineered to express the lacZ, lacY genes. Enzyme Microbial Technol 40:1352–1367

    Article  CAS  Google Scholar 

  • Dai J, Krohn K, Flörke U, Draeger S, Schulz B, Kiss-Szikszai A (2006) Metabolites from the endophytic fungus Nodulisporium sp. from Juniperus cedrus. European J Org Chem 2006:3498–3506

    Article  Google Scholar 

  • Dai J, Krohn K, Draeger S, Schulz B (2009) New naphthalenechroman coupling products from the endophytic fungus, Nodulisporium sp. from Erica arborea. European J Org Chem 2009:1564–1569

    Article  CAS  Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prods 69:1121–1124

    Article  CAS  Google Scholar 

  • Findlay JA, Buthelezi S, Lavoie R, Rodriguez L (1995a) Bioactive isocoumarins and related metabolites from conifer endophytes. J Nat Prods 58:1759–1766

    Article  CAS  Google Scholar 

  • Findlay JA, Li G, Penner PE (1995b) Novel diterpenoid insect toxins from a conifer endophyte. J Nat Prods 58:197–200

    Article  CAS  Google Scholar 

  • Gangadevi V, Muthumary J (2008) Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J Microbiol Biotechnol 24:717–724

    Article  CAS  Google Scholar 

  • Gangadevi V, Muthumary J (2009a) Taxol production by Pestalotiopsis terminaliae, an endophytic fungus of Terminalia arjuna (arjun tree). Biotechnol Appl Biochem 158:675–684

    Article  CAS  Google Scholar 

  • Gangadevi V, Muthumary J (2009b) A novel endophytic taxol-producing fungus Chaetomella raphigera isolated from a medicinal plant, Terminalia arjuna. Biotechnol Appl Biochem 158:675–684

    Article  CAS  Google Scholar 

  • Gangadevi V, Murugan M, Muthumary J (2008) Taxol determination from Pestalotiopsis pauciseta, a fungal endophyte of a medicinal plant. Chin J Biotechnol 24:1433–1438

    Article  CAS  Google Scholar 

  • Gardner JM, Feldman AW, Zablotowicz RM (1982) Identity and behavior of xylem-residing bacteria in rough lemon roots of Florida citrus trees. Appl Environ Microbiol 43:1335–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grove JFJ (1985) Metabolic products of Phomopsis oblonga. Part 2. Phomopsolides A and B, tiglic esters of two 6-substituted 5,6-dihydo-5-hydroxypyran-2-ones. Chem Soc Perkin Trans 1:865–869

    Article  Google Scholar 

  • Guo B, Dai JR, Ng S, Huang Y, Leong C, Ong W, Carte BK (2000) Cytonic acids A and B: novel tridepside inhibiyors of hCMV protease from the endophytic fungus Cytonaema species. J Nat Prod 63:602–604

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Zamora ML, Martínez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126

    Google Scholar 

  • Harrison LH, Teplow DB, Rinaldi M, Strobel G (1991) Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad spectrum antifungal activities. J Gen Microbiol 137:2857–2865

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama T, Koseki T, Murayama T, Shiono Y (2010) Eremophilane sesquiterpenes from the endophyte Microdiplodia sp. KS 75-1 and revision of the stereochemistries of phomadecalins C and D. Phytochem Letts 3:148–151

    Article  CAS  Google Scholar 

  • Hoffmann JA, Reichhart JM (2002) Drosophila innate immunity: an evolutionary perspective. Nat Immunol 3:121–126

    Article  CAS  PubMed  Google Scholar 

  • Hu ZY, Li YY, Huang YJ, Su WJ, Shen YM (2008) Three new sesquiterpenoids from Xylaria sp. NCY2. Helv Chim Acta 91:46–52

    Article  CAS  Google Scholar 

  • Jacobs MJ, Williams MB, David AG (1985) Innumeration, location, characterisation of endophytic bacteria within sugar beet roots. Can J Bot 63:1262–1265

    Article  Google Scholar 

  • Jalgaonwala RE, Mohite BV, Mahajan RT (2011) A review: natural products from plant associated endophytic fungi. J Microbiol Biotechnol Res 1(2):21–32 Scholar Research Library

    Google Scholar 

  • Kado CI (1992) Plant pathogenic bacteria. In Balous A, Truper HG, Dworkin M, Harder W, Schlerifer KH (eds) The prokaryotes, vol I. Springer, New York, pp 659–674

    Google Scholar 

  • Kalia VC, Chauhan A, Bhattacharyya G (2003) Genomic databases yield novel bioplastic producers. Nat Biotechnol 21:845–846

    Article  CAS  PubMed  Google Scholar 

  • Khaled AS, Elkhateeb WA, Ahmed MT, El-Beih AA, Tahany MA, El-Diwany AI, Ahmed EF (2018) Antiviral and antioxidant potential of fungal endophytes of Egyptian medicinal plants. Fermentation 4:49–60

    Article  CAS  Google Scholar 

  • Kim JH, Choong HL (2009) Heptelidic acid, a sesquiterpene lactone, inhibits etoposide-induced apoptosis in human leukemia U937 cells. J Microbiol Biotechnol 19:787–791

    CAS  PubMed  Google Scholar 

  • Kim S, Shin DS, Lee T, Oh KB (2004) Periconicins, two new fusicoccane diterpenes produced by an endophytic fungus Periconia sp. with antibacterial activity. J Nat Products 67:448–450

    Article  CAS  Google Scholar 

  • Kobayashi DY, Palumboo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker Inc, New York, pp 199–233

    Google Scholar 

  • Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P, Khajuria RK, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24:1115–1121

    Article  CAS  Google Scholar 

  • Kour D, Rana KL, Kumar A, Rastegari AA, Yadav N, Yadav AN, Gupta VK (2019a) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina G, Gupta VK, Singh BN, Gathergood N (eds) Bioprocessing for biomolecules production. Wiley, USA, pp 321–372

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2019b) Rhizospheric Microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices. Springer, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019c) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi. Volume 2: Perspective for value-added products and environments. Springer, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Google Scholar 

  • Kumar AG, Antony RA, Kannan VR (2015) Exploration of endophytic microorganisms from selected medicinal plants and their control potential to multi drug resistant pathogen. J Med Plant Studies 3:49–57

    CAS  Google Scholar 

  • Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Strobel GA, Lobkovsky E, Clardy J (1996) Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus. Pestalotiopsis microspora J Org Chem 61:3232–3233

    Article  CAS  Google Scholar 

  • Li JY, Strobel G, Sidhu R, Hess WM, Ford EJ (1996) Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiol 142:2223–2226

    Article  CAS  Google Scholar 

  • Liu Y, Luo J, Xu C, Ren F, Peng C, Wu G, Zhao J (2000) Purification, characterization, and molecular cloning of the gene of a seed-specific antimicrobial protein from pokeweed. Plant Physiol 122:1015–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21(6):583–606

    Article  Google Scholar 

  • Lu L, He J, Yu X, Li G, Zhang X (2006) Studies on isolation and identification of endophytic fungi strain SC13 from pharmaceutical plant Sabina vulgaris Ant. and metabolites. Acta Botany Boreal-Occident Sinica 15:85–89

    Google Scholar 

  • Marx J (2004) The roots of plant–microbe collaborations. Science 304:234–236

    Article  PubMed  Google Scholar 

  • Moricca S, Ragazzi A (2008) Fungal endophytes in Mediterranean oak forest: a lesson from Discula Quercina. Phytopathol 98:380–386

    Article  CAS  Google Scholar 

  • Noble HM, Langley D, Sidebottom PJ, Lane SJ, Fisher PJ (1991) An echinocandin from an endophytic Cryptosporiopsis sp. and Pezicula sp. in Pinus sylvestris and Fagus sylvatica. Mycol Res 95:1439–1440

    Article  CAS  Google Scholar 

  • Park JH, Choi GJ, Lee SW, Lee HB, Kim KM, Jung HS, Jang KS, Cho KY, Kim JC (2005) Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol 15:112–117

    CAS  Google Scholar 

  • Pelaez F, Cabello A, Platas G, Diez MT, Gonzalez del Val A, Basilio A, Martan I, Vicente F, Bills GF, Giacobbe RA, Schwartz RE, Onishi JC, Meinz MS, Abruzzo GK, Flattery AM, Kong L, Kurtz MB (2000) The discovery of enfumafungin, a novel antifungal compound produced by an endophytic Hormonema species biological activity and taxonomy of the producing organisms. Syst Appl Microbiol 23:333–343

    Article  CAS  PubMed  Google Scholar 

  • Porras-Soriano A, Soriano-Martín ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359

    Article  CAS  PubMed  Google Scholar 

  • Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R, Sharma A, Kumarc R, Sharma RK, Qazi GN (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510

    Article  CAS  PubMed  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, vol 1. Diversity and Enzymes Perspectives. Springer, Switzerland, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rana KL, Kour D, Yadav AN (2019c) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  • Richardson SN, Walker AK, Nsiama TK, McFarlane J, Sumarah MW, Ibrahim A, Miller JD (2014) Griseofulvin-producing Xylaria endophytes of Pinus strobus and Vaccinium angustifolium: evidence for a conifer-understory species endophyte ecology. Fungal Ecol 11:107–113

    Article  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Schmeda-Hirschmann G, Hormazabal E, Rodriguez JA, Theoduloz C (2008) Cycloaspeptide A and pseurotin A from the endophytic fungus Penicillium janczewskii. Zeitschrift für Naturforschung C 63:383–388

    Article  CAS  Google Scholar 

  • Seto Y, Takahashi K, Matsura H, Kogami Y, Yada H, Yoshihara T, Nabita K (2007) Novel cyclic peptide Epichlicin from the endophytic fungus Epichloe typhin. Biosci Biotech Biochem 71:1470–1475

    Article  CAS  Google Scholar 

  • Settu S, Arunachalam S, Gayatri S (2010) Endophytic fungi: a review on pharmaceulogical activities and its industrial applications. Inter J Pharma Sci 53:82–89

    Google Scholar 

  • Stierle AA, Stierle DB (2000) Bioactive compounds from four endophytic Penicillium sp. isolated from the Northwest Pacific yew tree. In: Atta-Ur-Rahman (ed) Bioactive natural products, vol. 24. Elsevier Science, Amsterdam, pp 933–978

    Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae an endophytic fungus of Pacific yew. Science 260:214–216

    Article  CAS  PubMed  Google Scholar 

  • Stierle A, Stierle D, Strobel G, Bignami G, Grothaus P (1995) Bioactive metabolites of the endophytic fungi of Pacific yew, Taxus brevifolia: paclitaxel, taxanes, and other bioactive compounds. In: Georg GI, Chen TT, Ojima I, Vyas DM (eds) Taxane anticancer agents: basic science and current status. Washington, DC, p. 81–97. ACS Symposium Series 583

    Google Scholar 

  • Stierle DB, Stierle AA, Ganser B (1997) New phomopsolides from a Penicillium sp. J Nat Prod 60:1207–1209

    Article  CAS  PubMed  Google Scholar 

  • Stierle A, Stierle DB, Bugni T (2001) Sequoiatones C-F, constituents of redwood endophyte Aspergillus parasiticus. J Nat Prod 64:1350–1353

    Article  CAS  PubMed  Google Scholar 

  • Stierle DB, Stierle AA, Bugni T (2003) Sequoiamonascins A-D: novel anticancer metabolites isolated from a redwood endophyte. J Org Chem 68:4966–49699

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Stierle A, Stierle D (1993) Taxomyces andreanae, a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew. Mycotaxon 47:71–78

    Google Scholar 

  • Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 142:435–440

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Torczynski R, Bollon A (1997) Acremonium sp.—aleucinostatin A producing endophyte of European yew (Taxus baccata). Plant Sci 128:97–108

    Article  CAS  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer, India, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Sumarah MW, Kesting JR, Sorensen D, Miller JD (2011) Antifungal metabolites from fungal endophytes of Pinus strobus. Phytochem 72:1833–1837

    Article  CAS  Google Scholar 

  • Sun L, Lu Z, Bie X, Lu F, Yang S (2006) Isolation and characterization of a coproducer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J Microbiol Biotechnol 22:1259–1266

    Article  CAS  Google Scholar 

  • Tanak Y, Shiomi K, Kamaei K, Sugoh-Hagino M, Enomoto Y, Fang F, Yamaguchi Y, Masuma R, Zhang CG, Zhang XW, Omura S (1998) Antimalarial activity of radicicol, heptelidic acid and other fungal metabolites. J Antibiotics 51:153–160

    Article  Google Scholar 

  • Taylor TN, Taylor EL (2000) The rhynie chert ecosystem, a model for understanding fungal interactions. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Decker Inc., New York, pp 31–48

    Google Scholar 

  • Vizioli J, Salzet M (2002) Antimicrobial peptides versus parasitic infections. Trends Parasitol 18:475–476

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Huang Y, Fang M, Zhang Y, Zheng Z, Zhao Y, Su W (2002) Brefeldin A a cytotoxin produced by Paecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei and Torreya grandis. FEMS Immunol Med Microbiol 34:51–57

    Article  CAS  PubMed  Google Scholar 

  • Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant Antitumor Agents VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Amer Chem Soc 93:2325–2327

    Article  CAS  Google Scholar 

  • Whitesides S, Spotts RA (1991) Susceptibility of pear cultivars to blossom blast caused by Pseudomonas syringae. Hortscience 26

    Google Scholar 

  • Wijeratne EMK, Paranagama PA, Marron MT, Gunatilaka MK, Arnold AE, Gunatilaka AAL (2008) Sesquiterpene quinones and related metabolites from Phyllosticta spinarum, a fungal strain endophytic in Platycladus orientalis, of the sonoran desert. J Nat Prod 71:218–222

    Article  CAS  PubMed  Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Xu R, Wang MZ, Lu CH, Zheng ZH, Shen YM (2009) Tuberculariols A-C, new sesquiterpenes from the mutant strain M-741 of Tubercularia sp. TF 5. Helv Chim Acta 92:1514–1519

    Article  CAS  Google Scholar 

  • Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4

    Google Scholar 

  • Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:01–05

    Google Scholar 

  • Yadav AN, Yadav N (2018) Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta Sci Agric 2:85–88

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13

    Article  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi. Volume 1: Diversity and enzymes perspectives. Springer, Cham

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: Perspective for value-added products and environments. Springer, Cham

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019c) Recent advancement in white biotechnology through fungi. Volume 3: Perspective for sustainable environments. Springer, Cham

    Google Scholar 

  • Zhou K, Qiao K, Edgar S, Stephanopoulos GPT (2015) Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol 33:377–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to their respective academic institutions for the support extended. The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanda V. Parulekar Berde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parulekar Berde, C.V., Rawool, P.P., Bramhachari, P.V., Berde, V.B. (2020). Endophytic Microbes from Medicinal Plants and Their Secondary Metabolites for Agricultural Significances. In: Yadav, A., Singh, J., Rastegari, A., Yadav, N. (eds) Plant Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-38453-1_4

Download citation

Publish with us

Policies and ethics