Skip to main content

Ubiquitin-Regulated Cell Proliferation and Cancer

  • Chapter
  • First Online:
Proteostasis and Disease

Abstract

Ubiquitin ligases (E3) play a crucial role in the regulation of different cellular processes such as proliferation and differentiation via recognition, interaction, and ubiquitination of key cellular proteins in a spatial and temporal regulated manner. The type of ubiquitin chain formed determines the fate of the substrates. The ubiquitinated substrates can be degraded by the proteasome, display altered subcellular localization, or can suffer modifications on their interaction with functional protein complexes. Deregulation of E3 activities is frequently found in various human pathologies, including cancer. The illegitimated or accelerated degradation of oncosuppressive proteins or, inversely, the abnormally high accumulation of oncoproteins, contributes to cell proliferation and transformation. Anomalies in protein abundance may be related to mutations that alter the direct or indirect recognition of proteins by the E3 enzymes or alterations in the level of expression or activity of ubiquitin ligases. Through a few examples, we illustrate here the complexity and diversity of the molecular mechanisms related to protein ubiquitination involved in cell cycle regulation. We will discuss the role of ubiquitin-dependent degradation mediated by the proteasome, the role of non-proteolytic ubiquitination during cell cycle progression, and the consequences of this deregulation on cellular transformation. Finally, we will highlight the novel opportunities that arise from these studies for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weinberg RA (2014) The biology of cancer, 2nd edn. Garland Science, New York

    Google Scholar 

  2. Lodish H, Berk A, Matsudaira P et al (2003) Molecular cell biology, 5th edn. W.H. Freeman, New York

    Google Scholar 

  3. Malumbres M (2014) Cyclin-dependent kinases. Genome Biol 15:122

    Article  PubMed  PubMed Central  Google Scholar 

  4. Grant GD, Cook JG (2017) The temporal regulation of S phase proteins during G1. Adv Exp Med Biol 1042:335–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morgan DO (2007) The cell cycle: principles of control. New Science Press, London

    Google Scholar 

  6. Bassermann F, Eichner R, Pagano M (2014) The ubiquitin proteasome system—implications for cell cycle control and the targeted treatment of cancer. Biochim Biophys Acta 1843:150–162

    Article  CAS  PubMed  Google Scholar 

  7. Nakayama KI, Nakayama K (2005) Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin Cell Dev Biol 16:323–333

    Article  CAS  PubMed  Google Scholar 

  8. Frescas D, Pagano M (2008) Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer 8:438–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ang XL, Wade Harper J (2005) SCF-mediated protein degradation and cell cycle control. Oncogene 24:2860–2870

    Article  CAS  PubMed  Google Scholar 

  10. Nakayama KI, Nakayama K (2006) Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6:369–381

    Article  CAS  PubMed  Google Scholar 

  11. Kernan J, Bonacci T, Emanuele MJ (2018) Who guards the guardian? Mechanisms that restrain APC/C during the cell cycle. Biochim Biophys Acta Mol Cell Res 1865:1924–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garnett MJ, Mansfeld J, Godwin C et al (2009) UBE2S elongates ubiquitin chains on APC/C substrates to promote mitotic exit. Nat Cell Biol 11:1363–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jin L, Williamson A, Banerjee S et al (2008) Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133:653–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Matsumoto ML, Wickliffe KE, Dong KC et al (2010) K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell 39:477–484

    Article  CAS  PubMed  Google Scholar 

  15. Williamson A, Wickliffe KE, Mellone BG et al (2009) Identification of a physiological E2 module for the human anaphase-promoting complex. Proc Natl Acad Sci USA 106:18213–18218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wickliffe KE, Lorenz S, Wemmer DE et al (2011) The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell 144:769–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wickliffe KE, Williamson A, Meyer HJ et al (2011) K11-linked ubiquitin chains as novel regulators of cell division. Trends Cell Biol 21:656–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu T, Merbl Y, Huo Y et al (2010) UBE2S drives elongation of K11-linked ubiquitin chains by the anaphase-promoting complex. Proc Natl Acad Sci USA 107:1355–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meyer HJ, Rape M (2014) Enhanced protein degradation by branched ubiquitin chains. Cell 157:910–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rape M, Kirschner MW (2004) Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature 432:588–595

    Article  CAS  PubMed  Google Scholar 

  21. Summers MK, Pan B, Mukhyala K, Jackson PK (2008) The unique N terminus of the UbcH10 E2 enzyme controls the threshold for APC activation and enhances checkpoint regulation of the APC. Mol Cell 31:544–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Borg N, Dixit V (2017) Ubiquitin in cell-cycle regulation and dysregulation in cancer. Annu Rev Cancer Biol 1:59–77

    Article  Google Scholar 

  23. Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387:299–303

    Article  CAS  PubMed  Google Scholar 

  24. Chen D, Brooks CL, Gu W (2006) ARF-BP1 as a potential therapeutic target. Br J Cancer 94:1555–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kamura T, Hara T, Matsumoto M et al (2004) Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase. Nat Cell Biol 6:1229–1235

    Article  CAS  PubMed  Google Scholar 

  26. Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1:193–199

    Article  CAS  PubMed  Google Scholar 

  27. Welcker M, Clurman BE (2008) FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8:83–93

    Article  CAS  PubMed  Google Scholar 

  28. Ji P, Jiang H, Rekhtman K et al (2004) An Rb-Skp2-p27 pathway mediates acute cell cycle inhibition by Rb and is retained in a partial-penetrance Rb mutant. Mol Cell 16:47–58

    Article  CAS  PubMed  Google Scholar 

  29. Binne UK, Classon MK, Dick FA et al (2007) Retinoblastoma protein and anaphase-promoting complex physically interact and functionally cooperate during cell-cycle exit. Nat Cell Biol 9:225–232

    Article  CAS  PubMed  Google Scholar 

  30. Rabie AB, Zhao Z, Shen G et al (2001) Osteogenesis in the glenoid fossa in response to mandibular advancement. Am J Orthod Dentofac Orthop 119:390–400

    Article  CAS  Google Scholar 

  31. Okoro DR, Arva N, Gao C et al (2013) Endogenous human MDM2-C is highly expressed in human cancers and functions as a p53-independent growth activator. PLoS One 8:e77643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sdek P, Ying H, Zheng H et al (2004) The central acidic domain of MDM2 is critical in inhibition of retinoblastoma-mediated suppression of E2F and cell growth. J Biol Chem 279:53317–53322

    Article  CAS  PubMed  Google Scholar 

  33. Uchida C, Miwa S, Kitagawa K et al (2005) Enhanced Mdm2 activity inhibits pRB function via ubiquitin-dependent degradation. EMBO J 24:160–169

    Article  CAS  PubMed  Google Scholar 

  34. Sdek P, Ying H, Chang DL et al (2005) MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell 20:699–708

    Article  CAS  PubMed  Google Scholar 

  35. Cardozo T, Pagano M (2004) The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 5:739–751

    Article  CAS  PubMed  Google Scholar 

  36. Al-Hakim A, Escribano-Diaz C, Landry MC et al (2010) The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair (Amst) 9:1229–1240

    Article  CAS  Google Scholar 

  37. Inuzuka H, Tseng A, Gao D et al (2010) Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase. Cancer Cell 18:147–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6:909–923

    Article  CAS  PubMed  Google Scholar 

  39. Lavin MF, Gueven N (2006) The complexity of p53 stabilization and activation. Cell Death Differ 13:941–950

    Article  CAS  PubMed  Google Scholar 

  40. Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412

    Article  CAS  PubMed  Google Scholar 

  41. Maya R, Balass M, Kim ST et al (2001) ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 15:1067–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Agrawal A, Yang J, Murphy RF, Agrawal DK (2006) Regulation of the p14ARF-Mdm2-p53 pathway: an overview in breast cancer. Exp Mol Pathol 81:115–122

    Article  CAS  PubMed  Google Scholar 

  43. Mantovani F, Gostissa M, Collavin L, Del Sal G (2004) KeePin’ the p53 family in good shape. Cell Cycle 3:905–911

    Article  CAS  PubMed  Google Scholar 

  44. Busino L, Donzelli M, Chiesa M et al (2003) Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature 426:87–91

    Article  CAS  PubMed  Google Scholar 

  45. Donzelli M, Busino L, Chiesa M et al (2004) Hierarchical order of phosphorylation events commits Cdc25A to betaTrCP-dependent degradation. Cell Cycle 3:469–471

    Article  CAS  PubMed  Google Scholar 

  46. Honaker Y, Piwnica-Worms H (2010) Casein kinase 1 functions as both penultimate and ultimate kinase in regulating Cdc25A destruction. Oncogene 29:3324–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jin J, Shirogane T, Xu L et al (2003) SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev 17:3062–3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Timofeev O, Cizmecioglu O, Hu E et al (2009) Human Cdc25A phosphatase has a non-redundant function in G2 phase by activating cyclin A-dependent kinases. FEBS Lett 583:841–847

    Article  CAS  PubMed  Google Scholar 

  49. Xiao Z, Chen Z, Gunasekera AH et al (2003) Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J Biol Chem 278:21767–21773

    Article  CAS  PubMed  Google Scholar 

  50. Mailand N, Bekker-Jensen S, Bartek J, Lukas J (2006) Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. Mol Cell 23:307–318

    Article  CAS  PubMed  Google Scholar 

  51. Mamely I, van Vugt MA, Smits VA et al (2006) Polo-like kinase-1 controls proteasome-dependent degradation of Claspin during checkpoint recovery. Curr Biol 16:1950–1955

    Article  CAS  PubMed  Google Scholar 

  52. Peschiaroli A, Dorrello NV, Guardavaccaro D et al (2006) SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 23:319–329

    Article  CAS  PubMed  Google Scholar 

  53. Watanabe N, Arai H, Nishihara Y et al (2004) M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc Natl Acad Sci USA 101:4419–4424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yamasaki L, Pagano M (2004) Cell cycle, proteolysis and cancer. Curr Opin Cell Biol 16:623–628

    Article  CAS  PubMed  Google Scholar 

  55. Peters JM (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7:644–656

    Article  CAS  PubMed  Google Scholar 

  56. Li Y, Gorbea C, Mahaffey D et al (1997) MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity. Proc Natl Acad Sci USA 94:12431–12436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fang G, Yu H, Kirschner MW (1998) The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev 12:1871–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sudakin V, Chan GK, Yen TJ (2001) Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 154:925–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tang Z, Bharadwaj R, Li B, Yu H (2001) Mad2-independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev Cell 1:227–237

    Article  CAS  PubMed  Google Scholar 

  60. Fang G (2002) Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol Biol Cell 13:755–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bashir T, Dorrello NV, Amador V et al (2004) Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 428:190–193

    Article  CAS  PubMed  Google Scholar 

  62. Wei W, Ayad NG, Wan Y et al (2004) Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428:194–198

    Article  CAS  PubMed  Google Scholar 

  63. Fukushima H, Ogura K, Wan L et al (2013) SCF-mediated Cdh1 degradation defines a negative feedback system that coordinates cell-cycle progression. Cell Rep 4:803–816

    Article  CAS  PubMed  Google Scholar 

  64. Listovsky T, Oren YS, Yudkovsky Y et al (2004) Mammalian Cdh1/Fzr mediates its own degradation. EMBO J 23:1619–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hsu JY, Reimann JD, Sorensen CS et al (2002) E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1). Nat Cell Biol 4:358–366

    Article  CAS  PubMed  Google Scholar 

  66. Lim KH, Song MH, Baek KH (2016) Decision for cell fate: deubiquitinating enzymes in cell cycle checkpoint. Cell Mol Life Sci 73:1439–1455

    Article  CAS  PubMed  Google Scholar 

  67. Gilberto S, Peter M (2017) Dynamic ubiquitin signaling in cell cycle regulation. J Cell Biol 216:2259–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Senft D, Qi J, Ronai ZA (2018) Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat Rev Cancer 18:69–88

    Article  CAS  PubMed  Google Scholar 

  69. Linares JF, Duran A, Yajima T et al (2013) K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells. Mol Cell 51:283–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang B, Jie Z, Joo D et al (2017) TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature 545:365–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chan CH, Li CF, Yang WL et al (2012) The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell 151:913–914

    Article  CAS  PubMed  Google Scholar 

  72. Xu L, Lubkov V, Taylor LJ, Bar-Sagi D (2010) Feedback regulation of Ras signaling by Rabex-5-mediated ubiquitination. Curr Biol 20:1372–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sasaki AT, Carracedo A, Locasale JW et al (2011) Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci Signal 4:ra13

    Article  PubMed  PubMed Central  Google Scholar 

  74. Orthwein A, Noordermeer SM, Wilson MD et al (2015) A mechanism for the suppression of homologous recombination in G1 cells. Nature 528:422–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brodersen MM, Lampert F, Barnes CA et al (2016) CRL4(WDR23)-mediated SLBP ubiquitylation ensures histone supply during DNA replication. Mol Cell 62:627–635

    Article  CAS  PubMed  Google Scholar 

  76. Dankert JF, Rona G, Clijsters L et al (2016) Cyclin F-mediated degradation of SLBP limits H2A.X accumulation and apoptosis upon genotoxic stress in G2. Mol Cell 64:507–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zaidi IW, Rabut G, Poveda A et al (2008) Rtt101 and Mms1 in budding yeast form a CUL4(DDB1)-like ubiquitin ligase that promotes replication through damaged DNA. EMBO Rep 9:1034–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Han J, Zhang H, Wang Z et al (2013) A Cul4 E3 ubiquitin ligase regulates histone hand-off during nucleosome assembly. Cell 155:817–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moghe S, Jiang F, Miura Y et al (2012) The CUL3-KLHL18 ligase regulates mitotic entry and ubiquitylates Aurora-A. Biol Open 1:82–91

    Article  CAS  PubMed  Google Scholar 

  80. Guturi KK, Bohgaki M, Bohgaki T et al (2016) RNF168 and USP10 regulate topoisomerase IIalpha function via opposing effects on its ubiquitylation. Nat Commun 7:12638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lou Z, Minter-Dykhouse K, Chen J (2005) BRCA1 participates in DNA decatenation. Nat Struct Mol Biol 12:589–593

    Article  CAS  PubMed  Google Scholar 

  82. Mattiroli F, Vissers JH, van Dijk WJ et al (2012) RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell 150:1182–1195

    Article  CAS  PubMed  Google Scholar 

  83. Ruchaud S, Carmena M, Earnshaw WC (2007) Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 8:798–812

    Article  CAS  PubMed  Google Scholar 

  84. Vong QP, Cao K, Li HY et al (2005) Chromosome alignment and segregation regulated by ubiquitination of survivin. Science 310:1499–1504

    Article  CAS  PubMed  Google Scholar 

  85. Maerki S, Olma MH, Staubli T et al (2009) The Cul3-KLHL21 E3 ubiquitin ligase targets aurora B to midzone microtubules in anaphase and is required for cytokinesis. J Cell Biol 187:791–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Krupina K, Kleiss C, Metzger T et al (2016) Ubiquitin receptor protein UBASH3B drives Aurora B recruitment to mitotic microtubules. Dev Cell 36:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Beck J, Maerki S, Posch M et al (2013) Ubiquitylation-dependent localization of PLK1 in mitosis. Nat Cell Biol 15:430–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhuo X, Guo X, Zhang X et al (2015) Usp16 regulates kinetochore localization of Plk1 to promote proper chromosome alignment in mitosis. J Cell Biol 210:727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang Y, Liu M, Li D et al (2014) CYLD regulates spindle orientation by stabilizing astral microtubules and promoting dishevelled-NuMA-dynein/dynactin complex formation. Proc Natl Acad Sci USA 111:2158–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Massoumi R (2011) CYLD: a deubiquitination enzyme with multiple roles in cancer. Future Oncol 7:285–297

    Article  CAS  PubMed  Google Scholar 

  91. Harhaj EW, Dixit VM (2011) Deubiquitinases in the regulation of NF-kappaB signaling. Cell Res 21:22–39

    Article  CAS  PubMed  Google Scholar 

  92. Tauriello DV, Haegebarth A, Kuper I et al (2010) Loss of the tumor suppressor CYLD enhances Wnt/beta-catenin signaling through K63-linked ubiquitination of Dvl. Mol Cell 37:607–619

    Article  CAS  PubMed  Google Scholar 

  93. Yan K, Li L, Wang X et al (2015) The deubiquitinating enzyme complex BRISC is required for proper mitotic spindle assembly in mammalian cells. J Cell Biol 210:209–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dong Y, Hakimi MA, Chen X et al (2003) Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol Cell 12:1087–1099

    Article  CAS  PubMed  Google Scholar 

  95. Zhang X, Cai J, Zheng Z et al (2015) A novel ER-microtubule-binding protein, ERLIN2, stabilizes cyclin B1 and regulates cell cycle progression. Cell Discov 1:15024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Niikura Y, Kitagawa R, Ogi H et al (2015) CENP-A K124 ubiquitylation is required for CENP-A deposition at the centromere. Dev Cell 32:589–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Qi J, Ronai ZA (2015) Dysregulation of ubiquitin ligases in cancer. Drug Resist Updat 23:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  99. Knudsen ES, Knudsen KE (2006) Retinoblastoma tumor suppressor: where cancer meets the cell cycle. Exp Biol Med (Maywood) 231:1271–1281

    Article  Google Scholar 

  100. Dyson N, Howley PM, Munger K, Harlow E (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243:934–937

    Article  CAS  PubMed  Google Scholar 

  101. Werness BA, Levine AJ, Howley PM (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248:76–79

    Article  CAS  PubMed  Google Scholar 

  102. Wise-Draper TM, Wells SI (2008) Papillomavirus E6 and E7 proteins and their cellular targets. Front Biosci 13:1003–1017

    Article  CAS  PubMed  Google Scholar 

  103. Vousden KH (1994) Interactions between papillomavirus proteins and tumor suppressor gene products. Adv Cancer Res 64:1–24

    Article  CAS  PubMed  Google Scholar 

  104. Hume AJ, Kalejta RF (2009) Regulation of the retinoblastoma proteins by the human herpesviruses. Cell Div 4:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Li H, Zhang J, Zhen C et al (2018) Gankyrin as a potential target for tumor therapy: evidence and perspectives. Am J Transl Res 10:1949–1960

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Li J, Tsai MD (2002) Novel insights into the INK4-CDK4/6-Rb pathway: counter action of gankyrin against INK4 proteins regulates the CDK4-mediated phosphorylation of Rb. Biochemistry 41:3977–3983

    Article  CAS  PubMed  Google Scholar 

  107. Dawson S, Higashitsuji H, Wilkinson AJ et al (2006) Gankyrin: a new oncoprotein and regulator of pRb and p53. Trends Cell Biol 16:229–233

    Article  CAS  PubMed  Google Scholar 

  108. Higashitsuji H, Itoh K, Nagao T et al (2000) Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat Med 6:96–99

    Article  CAS  PubMed  Google Scholar 

  109. Higashitsuji H, Itoh K, Sakurai T et al (2005) The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell 8:75–87

    Article  CAS  PubMed  Google Scholar 

  110. Wang Z, Inuzuka H, Zhong J et al (2012) DNA damage-induced activation of ATM promotes beta-TRCP-mediated Mdm2 ubiquitination and destruction. Oncotarget 3:1026–1035

    PubMed  PubMed Central  Google Scholar 

  111. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16

    Article  CAS  PubMed  Google Scholar 

  112. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  CAS  PubMed  Google Scholar 

  113. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    Article  CAS  PubMed  Google Scholar 

  114. Petitjean A, Achatz MI, Borresen-Dale AL et al (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26:2157–2165

    Article  CAS  PubMed  Google Scholar 

  115. Michael D, Oren M (2002) The p53 and Mdm2 families in cancer. Curr Opin Genet Dev 12:53–59

    Article  CAS  PubMed  Google Scholar 

  116. Bond GL, Hu W, Bond EE et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602

    Article  CAS  PubMed  Google Scholar 

  117. Vazquez A, Bond EE, Levine AJ, Bond GL (2008) The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov 7:979–987

    Article  CAS  PubMed  Google Scholar 

  118. Van Maerken T, Vandesompele J, Rihani A et al (2009) Escape from p53-mediated tumor surveillance in neuroblastoma: switching off the p14(ARF)-MDM2-p53 axis. Cell Death Differ 16:1563–1572

    Article  PubMed  CAS  Google Scholar 

  119. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505

    Article  CAS  PubMed  Google Scholar 

  120. Zhang Z, Zhang J, Xia N, Zhao Q (2017) Expanded strain coverage for a highly successful public health tool: prophylactic 9-valent human papillomavirus vaccine. Hum Vaccin Immunother 13:2280–2291

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ougolkov A, Zhang B, Yamashita K et al (2004) Associations among beta-TrCP, an E3 ubiquitin ligase receptor, beta-catenin, and NF-kappaB in colorectal cancer. J Natl Cancer Inst 96:1161–1170

    Article  CAS  PubMed  Google Scholar 

  122. Koch A, Waha A, Hartmann W et al (2005) Elevated expression of Wnt antagonists is a common event in hepatoblastomas. Clin Cancer Res 11:4295–4304

    Article  CAS  PubMed  Google Scholar 

  123. Muerkoster S, Arlt A, Sipos B et al (2005) Increased expression of the E3-ubiquitin ligase receptor subunit betaTRCP1 relates to constitutive nuclear factor-kappaB activation and chemoresistance in pancreatic carcinoma cells. Cancer Res 65:1316–1324

    Article  PubMed  Google Scholar 

  124. Suzuki H, Chiba T, Suzuki T et al (2000) Homodimer of two F-box proteins betaTrCP1 or betaTrCP2 binds to IkappaBalpha for signal-dependent ubiquitination. J Biol Chem 275:2877–2884

    Article  CAS  PubMed  Google Scholar 

  125. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    Article  CAS  PubMed  Google Scholar 

  126. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Beavon IR (2000) The E-cadherin-catenin complex in tumour metastasis: structure, function and regulation. Eur J Cancer 36:1607–1620

    Article  CAS  PubMed  Google Scholar 

  128. He TC, Sparks AB, Rago C et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  CAS  PubMed  Google Scholar 

  129. Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426

    Article  CAS  PubMed  Google Scholar 

  130. Polakis P (2002) Casein kinase 1: a Wnt’er of disconnect. Curr Biol 12:R499–R501

    Article  CAS  PubMed  Google Scholar 

  131. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    Article  CAS  PubMed  Google Scholar 

  132. Korinek V, Barker N, Morin PJ et al (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275:1784–1787

    Article  CAS  PubMed  Google Scholar 

  133. Rubinfeld B, Albert I, Porfiri E et al (1996) Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272:1023–1026

    Article  CAS  PubMed  Google Scholar 

  134. Li VS, Ng SS, Boersema PJ et al (2012) Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell 149:1245–1256

    Article  CAS  PubMed  Google Scholar 

  135. Carrano AC, Pagano M (2001) Role of the F-box protein Skp2 in adhesion-dependent cell cycle progression. J Cell Biol 153:1381–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Latres E, Chiarle R, Schulman BA et al (2001) Role of the F-box protein Skp2 in lymphomagenesis. Proc Natl Acad Sci USA 98:2515–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Loda M, Cukor B, Tam SW et al (1997) Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med 3:231–234

    Article  CAS  PubMed  Google Scholar 

  138. Grimmler M, Wang Y, Mund T et al (2007) Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell 128:269–280

    Article  CAS  PubMed  Google Scholar 

  139. Chu IM, Hengst L, Slingerland JM (2008) The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 8:253–267

    Article  CAS  PubMed  Google Scholar 

  140. Yokoi S, Yasui K, Saito-Ohara F et al (2002) A novel target gene, SKP2, within the 5p13 amplicon that is frequently detected in small cell lung cancers. Am J Pathol 161:207–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liang J, Slingerland JM (2003) Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2:339–345

    Article  CAS  PubMed  Google Scholar 

  142. Jonason JH, Gavrilova N, Wu M et al (2007) Regulation of SCF(SKP2) ubiquitin E3 ligase assembly and p27(KIP1) proteolysis by the PTEN pathway and cyclin D1. Cell Cycle 6:951–961

    Article  CAS  PubMed  Google Scholar 

  143. Wang Y, Penfold S, Tang X et al (1999) Deletion of the Cul1 gene in mice causes arrest in early embryogenesis and accumulation of cyclin E. Curr Biol 9:1191–1194

    Article  CAS  PubMed  Google Scholar 

  144. Welcker M, Orian A, Grim JE et al (2004) A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size. Curr Biol 14:1852–1857

    Article  CAS  PubMed  Google Scholar 

  145. Bai J, Zhou Y, Chen G et al (2011) Overexpression of Cullin1 is associated with poor prognosis of patients with gastric cancer. Hum Pathol 42:375–383

    Article  CAS  PubMed  Google Scholar 

  146. Min KW, Kim DH, Do SI et al (2012) Diagnostic and prognostic relevance of Cullin1 expression in invasive ductal carcinoma of the breast. J Clin Pathol 65:896–901

    Article  CAS  PubMed  Google Scholar 

  147. Zhu CQ, Blackhall FH, Pintilie M et al (2004) Skp2 gene copy number aberrations are common in non-small cell lung carcinoma, and its overexpression in tumors with ras mutation is a poor prognostic marker. Clin Cancer Res 10:1984–1991

    Article  CAS  PubMed  Google Scholar 

  148. Shim EH, Johnson L, Noh HL et al (2003) Expression of the F-box protein SKP2 induces hyperplasia, dysplasia, and low-grade carcinoma in the mouse prostate. Cancer Res 63:1583–1588

    CAS  PubMed  Google Scholar 

  149. Delogu S, Wang C, Cigliano A et al (2015) SKP2 cooperates with N-Ras or AKT to induce liver tumor development in mice. Oncotarget 6:2222–2234

    Article  PubMed  Google Scholar 

  150. Zhao H, Bauzon F, Fu H et al (2013) Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors. Cancer Cell 24:645–659

    Article  CAS  PubMed  Google Scholar 

  151. Lin HK, Chen Z, Wang G et al (2010) Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464:374–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sistrunk C, Kim SH, Wang X et al (2013) Skp2 deficiency inhibits chemical skin tumorigenesis independent of p27(Kip1) accumulation. Am J Pathol 182:1854–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang H, Bauzon F, Ji P et al (2010) Skp2 is required for survival of aberrantly proliferating Rb1-deficient cells and for tumorigenesis in Rb1+/- mice. Nat Genet 42:83–88

    Article  CAS  PubMed  Google Scholar 

  154. Slotky M, Shapira M, Ben-Izhak O et al (2005) The expression of the ubiquitin ligase subunit Cks1 in human breast cancer. Breast Cancer Res 7:R737–R744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shapira M, Ben-Izhak O, Linn S et al (2005) The prognostic impact of the ubiquitin ligase subunits Skp2 and Cks1 in colorectal carcinoma. Cancer 103:1336–1346

    Article  CAS  PubMed  Google Scholar 

  156. Yeh CH, Bellon M, Nicot C (2018) FBXW7: a critical tumor suppressor of human cancers. Mol Cancer 17:115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Davis RJ, Welcker M, Clurman BE (2014) Tumor suppression by the Fbw7 ubiquitin ligase: mechanisms and opportunities. Cancer Cell 26:455–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rajagopalan H, Jallepalli PV, Rago C et al (2004) Inactivation of hCDC4 can cause chromosomal instability. Nature 428:77–81

    Article  CAS  PubMed  Google Scholar 

  159. Strohmaier H, Spruck CH, Kaiser P et al (2001) Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413:316–322

    Article  CAS  PubMed  Google Scholar 

  160. Wang Z, Liu Y, Zhang P et al (2013) FAM83D promotes cell proliferation and motility by downregulating tumor suppressor gene FBXW7. Oncotarget 4:2476–2486

    PubMed  PubMed Central  Google Scholar 

  161. Mu Y, Zou H, Chen B et al (2017) FAM83D knockdown regulates proliferation, migration and invasion of colorectal cancer through inhibiting FBXW7/Notch-1 signalling pathway. Biomed Pharmacother 90:548–554

    Article  CAS  PubMed  Google Scholar 

  162. Gregory MA, Hann SR (2000) c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt’s lymphoma cells. Mol Cell Biol 20:2423–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bahram F, von der Lehr N, Cetinkaya C, Larsson LG (2000) c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood 95:2104–2110

    Article  CAS  PubMed  Google Scholar 

  164. Popov N, Wanzel M, Madiredjo M et al (2007) The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol 9:765–774

    Article  CAS  PubMed  Google Scholar 

  165. Schulein-Volk C, Wolf E, Zhu J et al (2014) Dual regulation of Fbw7 function and oncogenic transformation by Usp28. Cell Rep 9:1099–1109

    Article  PubMed  CAS  Google Scholar 

  166. Diefenbacher ME, Popov N, Blake SM et al (2014) The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer. J Clin Invest 124:3407–3418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kim SY, Herbst A, Tworkowski KA et al (2003) Skp2 regulates Myc protein stability and activity. Mol Cell 11:1177–1188

    Article  CAS  PubMed  Google Scholar 

  168. von der Lehr N, Johansson S, Wu S et al (2003) The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell 11:1189–1200

    Article  PubMed  Google Scholar 

  169. Welcker M, Orian A, Jin J et al (2004) The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 101:9085–9090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kim CM, Koike K, Saito I et al (1991) HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 351:317–320

    Article  CAS  PubMed  Google Scholar 

  171. Lee S, Kim W, Ko C, Ryu WS (2016) Hepatitis B virus X protein enhances Myc stability by inhibiting SCF(Skp2) ubiquitin E3 ligase-mediated Myc ubiquitination and contributes to oncogenesis. Oncogene 35:1857–1867

    Article  CAS  PubMed  Google Scholar 

  172. Weng AP, Ferrando AA, Lee W et al (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306:269–271

    Article  CAS  PubMed  Google Scholar 

  173. Nateri AS, Riera-Sans L, Da Costa C, Behrens A (2004) The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science 303:1374–1378

    Article  CAS  PubMed  Google Scholar 

  174. Wei W, Jin J, Schlisio S et al (2005) The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8:25–33

    Article  CAS  PubMed  Google Scholar 

  175. Perez-Benavente B, Farras R (2013) Regulation of GSK3beta-FBXW7-JUNB axis. Oncotarget 4:956–957

    Article  PubMed  PubMed Central  Google Scholar 

  176. Spruck CH, Strohmaier H, Sangfelt O et al (2002) hCDC4 gene mutations in endometrial cancer. Cancer Res 62:4535–4539

    CAS  PubMed  Google Scholar 

  177. Ye X, Nalepa G, Welcker M et al (2004) Recognition of phosphodegron motifs in human cyclin E by the SCF(Fbw7) ubiquitin ligase. J Biol Chem 279:50110–50119

    Article  CAS  PubMed  Google Scholar 

  178. Liu Y, Ren S, Castellanos-Martin A et al (2012) Multiple novel alternative splicing forms of FBXW7alpha have a translational modulatory function and show specific alteration in human cancer. PLoS One 7:e49453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Fuchs SY, Fried VA, Ronai Z (1998) Stress-activated kinases regulate protein stability. Oncogene 17:1483–1490

    Article  CAS  PubMed  Google Scholar 

  180. Harley ME, Allan LA, Sanderson HS, Clarke PR (2010) Phosphorylation of Mcl-1 by CDK1-cyclin B1 initiates its Cdc20-dependent destruction during mitotic arrest. EMBO J 29:2407–2420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Bolesta E, Pfannenstiel LW, Demelash A et al (2012) Inhibition of Mcl-1 promotes senescence in cancer cells: implications for preventing tumor growth and chemotherapy resistance. Mol Cell Biol 32:1879–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wertz IE, Kusam S, Lam C et al (2011) Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 471:110–114

    Article  CAS  PubMed  Google Scholar 

  183. Wang Q, Moyret-Lalle C, Couzon F et al (2003) Alterations of anaphase-promoting complex genes in human colon cancer cells. Oncogene 22:1486–1490

    Article  CAS  PubMed  Google Scholar 

  184. Lehman NL, Verschuren EW, Hsu JY et al (2006) Overexpression of the anaphase promoting complex/cyclosome inhibitor Emi1 leads to tetraploidy and genomic instability of p53-deficient cells. Cell Cycle 5:1569–1573

    Article  CAS  PubMed  Google Scholar 

  185. Mondal G, Sengupta S, Panda CK et al (2007) Overexpression of Cdc20 leads to impairment of the spindle assembly checkpoint and aneuploidization in oral cancer. Carcinogenesis 28:81–92

    Article  CAS  PubMed  Google Scholar 

  186. Okamoto Y, Ozaki T, Miyazaki K et al (2003) UbcH10 is the cancer-related E2 ubiquitin-conjugating enzyme. Cancer Res 63:4167–4173

    CAS  PubMed  Google Scholar 

  187. Pallante P, Berlingieri MT, Troncone G et al (2005) UbcH10 overexpression may represent a marker of anaplastic thyroid carcinomas. Br J Cancer 93:464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Berlingieri MT, Pallante P, Sboner A et al (2007) UbcH10 is overexpressed in malignant breast carcinomas. Eur J Cancer 43:2729–2735

    Article  CAS  PubMed  Google Scholar 

  189. Jiang L, Huang CG, Lu YC et al (2008) Expression of ubiquitin-conjugating enzyme E2C/UbcH10 in astrocytic tumors. Brain Res 1201:161–166

    Article  CAS  PubMed  Google Scholar 

  190. van Ree JH, Jeganathan KB, Malureanu L, van Deursen JM (2010) Overexpression of the E2 ubiquitin-conjugating enzyme UbcH10 causes chromosome missegregation and tumor formation. J Cell Biol 188:83–100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Chen S, Chen Y, Hu C et al (2010) Association of clinicopathological features with UbcH10 expression in colorectal cancer. J Cancer Res Clin Oncol 136:419–426

    Article  CAS  PubMed  Google Scholar 

  192. Chen SM, Jiang CY, Wu JY et al (2010) RNA interference-mediated silencing of UBCH10 gene inhibits colorectal cancer cell growth in vitro and in vivo. Clin Exp Pharmacol Physiol 37:525–529

    Article  CAS  PubMed  Google Scholar 

  193. Li SZ, Song Y, Zhang HH et al (2014) UbcH10 overexpression increases carcinogenesis and blocks ALLN susceptibility in colorectal cancer. Sci Rep 4:6910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Richardson PG, Barlogie B, Berenson J et al (2006) Extended follow-up of a phase II trial in relapsed, refractory multiple myeloma: final time-to-event results from the SUMMIT trial. Cancer 106:1316–1319

    Article  CAS  PubMed  Google Scholar 

  195. Chauhan D, Hideshima T, Mitsiades C et al (2005) Proteasome inhibitor therapy in multiple myeloma. Mol Cancer Ther 4:686–692

    Article  CAS  PubMed  Google Scholar 

  196. Hideshima T, Mitsiades C, Akiyama M et al (2003) Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 101:1530–1534

    Article  CAS  PubMed  Google Scholar 

  197. Demo SD, Kirk CJ, Aujay MA et al (2007) Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 67:6383–6391

    Article  CAS  PubMed  Google Scholar 

  198. Kortuem KM, Stewart AK (2013) Carfilzomib. Blood 121:893–897

    Article  CAS  PubMed  Google Scholar 

  199. Shrikhande GV, Scali ST, da Silva CG et al (2010) O-glycosylation regulates ubiquitination and degradation of the anti-inflammatory protein A20 to accelerate atherosclerosis in diabetic ApoE-null mice. PLoS One 5:e14240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Scortegagna M, Kim H, Li JL et al (2014) Fine tuning of the UPR by the ubiquitin ligases Siah1/2. PLoS Genet 10:e1004348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Tsunematsu R, Nakayama K, Oike Y et al (2004) Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J Biol Chem 279:9417–9423

    Article  CAS  PubMed  Google Scholar 

  202. Shakya R, Reid LJ, Reczek CR et al (2011) BRCA1 tumor suppression depends on BRCT phosphoprotein binding, but not its E3 ligase activity. Science 334:525–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Antoniou A, Pharoah PD, Narod S et al (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72:1117–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Zhang Y, Bai Y, Guan J, Chen L (2012) The MDM2 309 T/G polymorphism is associated with head and neck cancer risk especially in nasopharyngeal cancer: a meta-analysis. Onkologie 35:666–670

    Article  CAS  PubMed  Google Scholar 

  205. Jeon YJ, Khelifa S, Ratnikov B et al (2015) Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell 27:354–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Goldberg Z, Vogt Sionov R, Berger M et al (2002) Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation. EMBO J 21:3715–3727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Durcan TM, Fon EA (2015) The three ‘P’s of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev 29:989–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Yang Y, Ludwig RL, Jensen JP et al (2005) Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 7:547–559

    Article  CAS  PubMed  Google Scholar 

  209. Vassilev LT (2004) Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle 3:419–421

    Article  CAS  PubMed  Google Scholar 

  210. Issaeva N, Bozko P, Enge M et al (2004) Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 10:1321–1328

    Article  CAS  PubMed  Google Scholar 

  211. Leverson JD, Zhang H, Chen J et al (2015) Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell Death Dis 6:e1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Xiang W, Yang CY, Bai L (2018) MCL-1 inhibition in cancer treatment. Onco Targets Ther 11:7301–7314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Sakamoto KM, Kim KB, Kumagai A et al (2001) Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA 98:8554–8559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Lai AC, Crews CM (2017) Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov 16:101–114

    Article  CAS  PubMed  Google Scholar 

  215. Guedat P, Colland F (2007) Patented small molecule inhibitors in the ubiquitin proteasome system. BMC Biochem 8(Suppl 1):S14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Kategaya L, Di Lello P, Rouge L et al (2017) USP7 small-molecule inhibitors interfere with ubiquitin binding. Nature 550:534–538

    Article  CAS  PubMed  Google Scholar 

  217. Turnbull AP, Ioannidis S, Krajewski WW et al (2017) Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature 550:481–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Lill JR, Wertz IE (2014) Toward understanding ubiquitin-modifying enzymes: from pharmacological targeting to proteomics. Trends Pharmacol Sci 35:187–207

    Article  CAS  PubMed  Google Scholar 

  219. Nalepa G, Rolfe M, Harper JW (2006) Drug discovery in the ubiquitin-proteasome system. Nat Rev Drug Discov 5:596–613

    Article  CAS  PubMed  Google Scholar 

  220. Hoeller D, Dikic I (2009) Targeting the ubiquitin system in cancer therapy. Nature 458:438–444

    Article  CAS  PubMed  Google Scholar 

  221. Huang X, Dixit VM (2016) Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res 26:484–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Farràs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez-Benavente, B., Nasresfahani, A.F., Farràs, R. (2020). Ubiquitin-Regulated Cell Proliferation and Cancer. In: Barrio, R., Sutherland, J., Rodriguez, M. (eds) Proteostasis and Disease . Advances in Experimental Medicine and Biology, vol 1233. Springer, Cham. https://doi.org/10.1007/978-3-030-38266-7_1

Download citation

Publish with us

Policies and ethics