Skip to main content

Microalgae Cultivation in Wastewater to Recycle Nutrients as Biofertilizer

  • Chapter
  • First Online:
Environmental Biotechnology Vol. 1

Abstract

Nitrogen and phosphorus are two macronutrients present in chemical fertilizers applied to agricultural practices. Nitrogen is usually produced from the Haber–Bosch synthesis process, which converts atmospheric nitrogen into ammonia using natural gas. Consequently, it generated substantial amounts of CO2, which is the main contributor to global warming. Phosphorus is obtained from nonrenewable phosphate-based minerals using chemical processes with sulfuric acid. This method produces hazardous substances, which have a risk to both human health and the environment. Besides the environmental impacts from the production processes, the nutrient uptake efficiency by the cultures may be very low. Nitrogen can be easily lost to the environment due to denitrification, volatilization, and/or leaching. Phosphate may be converted into insoluble compounds after chemical reaction with soil minerals, which decreases the availability of this nutrient. These losses have major impacts on the environment, polluting the soil, water, and air.

With the increasing tendency of the fertilizer demand for agricultural practices, it is imperative (i) to find sustainable alternatives to chemical fertilizers (minimizing their world market cote) and (ii) to develop technologies that enhance nutrient uptake efficiency, reducing simultaneously the environmental impacts. Nutrient recycling from wastewaters represents a sustainable solution. These effluents have been proposed as sources of nitrogen and phosphorus for the culture of microalgae, with the simultaneous benefit of nitrogen and phosphorus removal (avoiding the environmental negative impacts with their discharge). Then, microalgal biomass can have several applications, including the production of biofertilizers. This process will enable nutrient recycling, reducing the requirement of fertilizers produced in a non-environmentally friendly way. This chapter aims to present the advantages (and research needs) of using microalgal cultures for nutrient recovery from wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgments

This work was financially supported by: (i) Project UID/EQU/00511/2019-Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE) funded by national funds through FCT/MCTES (PIDDAC); and (ii) Project POCI-01-0145-FEDER-031736-PIV4Algae (Process Intensification for microalgal production and Valorisation) funded by FEDER funds through COMPETE2020-Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES. J.C.M. Pires acknowledges the FCT Investigator 2015 Programme (IF/01341/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Carlos Magalhães Pires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santos, F.M., Pires, J.C.M. (2020). Microalgae Cultivation in Wastewater to Recycle Nutrients as Biofertilizer. In: Gothandam, K., Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Environmental Biotechnology Vol. 1. Environmental Chemistry for a Sustainable World, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-030-38192-9_3

Download citation

Publish with us

Policies and ethics