Skip to main content

Testing and Tribology

How Were Designs Tested for Wear, Strength, and Kinematics?

  • Chapter
  • First Online:
The Artificial Knee
  • 424 Accesses

Abstract

When the first artificial knees were invented, almost no testing methods were available. The first tests were related to friction, lubrication, and wear (tribology). The tests consisted of measuring the friction between the sliding surfaces and the wear produced over multiple cycles. The earliest test methods applied to the mechanics of artificial knee design were to measure the laxity and stability in loaded and unloaded conditions. The tests used standard loading machines, with special fixtures added. The next goal was to study the fixation of components. Tests ranged from simple loading conditions where the interface micromotions were measured to multichannel machines for comparing the fixation of different tibial component designs mounted in bone specimens. The basic data on the forces in the knee during activities, available from 1970, was a major benefit in all of the testing. This is particularly the case for knee simulators for measuring the long-term wear. The initial machines were single channel, but the first multichannel machines, developed in the 1990s, were needed for practical wear testing. The Oxford Knee Rig has been useful for studying kinematics and forces, while robots have been used mainly for studying ligament behavior. Tests are essential to design, and the FDA requires specific tests to gain approval for clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelgaied A, Fisher J, Jennings LM. A comparison between electromechanical and pneumatic-controlled knee simulators for the investigation of wear of total knee replacements. Proc Inst Mech Eng H J Eng Med. 2017;231(7):643–51.

    Article  Google Scholar 

  • Bergmann G, Bender A, Graichen F, et al. Standardized loads acting in knee implants. PLoS One. 2014;9(1):e86035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branson PJ, Steege JW, Wixson RL, Lewis J, Stulberg SD. Rigidity of initial fixation with uncemented tibial knee implants. J Arthroplast. 1989;4(1):21–6.

    Article  CAS  Google Scholar 

  • Brooks PJ, Walker PS, Scott RD. Tibial component fixation in deficient tibial bone stock. Clin Orthop Relat Res. 1984;184:302–8.

    Google Scholar 

  • Colley J, Cameron HU, Freeman MA, Swanson SA. Loosening of the femoral component in surface replacement of the knee. Arch Orthop Trauma Surg. 1978;92(1):31–4.

    Article  CAS  PubMed  Google Scholar 

  • Currier BH, Currier JH, Franklin KJ, Mayor MB, Reinitz SD, Van Citters DW. Comparison of wear and oxidation in retrieved conventional and highly cross-linked UHMWPE tibial inserts. J Arthroplast. 2015;30(12):2349–53.

    Article  Google Scholar 

  • DesJardins JD, Walker PS, Haider H, Perry J. The use of a force-controlled dynamic knee simulator to quantify the mechanical performance of total knee replacement designs during functional activity. J Biomech. 2000;33(10):1231–42.

    Article  CAS  PubMed  Google Scholar 

  • Dorr LD, Lindberg JP, Claude-Faugere M, Malluche HH. Factors influencing the intrusion of methylmethacrylate into human tibiae. Clin Orthop Relat Res. 1984;183:147–52.

    Google Scholar 

  • Ducheyne P, Kagan A 2nd, Lacey JA. Failure of total knee arthroplasty due to loosening and deformation of the tibial component. J Bone Joint Surg Am. 1978;60(3):384–91.

    Article  CAS  PubMed  Google Scholar 

  • Ezzet KA, Hershey AL, D’Lima DD, Irby SE, Kaufman KR, Colwell CW. Patella tracking in total knee arthroplasty. J Arthroplasty. 2001;16(7):838–43.

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick CK, Maag C, Clary CW, Metcalfe A, Langhorn J, Rullkoetter PJ. Validation of a new computational 6-DOF knee simulator during dynamic activities. J Biomech. 2016;49(14):3177–84.

    Article  PubMed  Google Scholar 

  • Freeman MA, Bradley GW, Blaha JD, Insler HP. Cementless fixation of the tibial component for the ICLH knee. J R Soc Med. 1982;75(6):418–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fregly BJ, Besier TF, Lloyd DG, et al. Grand challenge competition to predict in vivo knee loads. J Orthop Res. 2012;30(4):503–13.

    Article  PubMed  Google Scholar 

  • Goodfellow J, Hungerford DS, Zindel M. Patello-femoral joint mechanics and pathology. 1. Functional anatomy of the patello-femoral joint. J Bone Joint Surg. 1976;58(3):287–90.

    Article  CAS  Google Scholar 

  • Goodman SB. The effects of micromotion and particulate materials on tissue differentiation: bone chamber studies in rabbits. Acta Orthopaedica Scandinavica. 1994;65(sup258):1–43.

    Article  Google Scholar 

  • Grupp TM, Fritz B, Kutzner I, Schilling C, Bergmann G, Schwiesau J. Vitamin E stabilised polyethylene for total knee arthroplasty evaluated under highly demanding activities wear simulation. Acta Biomater. 2017;48:415–22.

    Article  CAS  PubMed  Google Scholar 

  • Gunston FH. Polycentric knee arthroplasty. Prosthetic simulation of normal knee movement. J Bone Joint Surg. 1971;53(2):272–7.

    Article  CAS  Google Scholar 

  • Haider H. Tribological assessment of UHMWPE in the knee, Chapter 32. In: Kurtz SM, editor. UHMWPE biomaterials handbook – ultra-high molecular weight polyethylene in total joint replacement and medical devices. 3rd ed: New York, USA: Elsevier Inc; 2016. p. 559–634.

    Google Scholar 

  • Haider H, Garvin K. Rotating platform versus fixed-bearing total knees: an in vitro study of wear. Clin Orthop Relat Res. 2008;466(11):2677–85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haider H, Kaddick C. Wear of mobile bearing knees: is it necessarily less? J ASTM Int. 2012;9(2):1–10.

    Article  Google Scholar 

  • Haider H, Weisenburger JN, Kurtz SM, et al. Does vitamin E-stabilized ultrahigh-molecular-weight polyethylene address concerns of cross-linked polyethylene in total knee arthroplasty? J Arthroplast. 2012;27(3):461–9.

    Article  Google Scholar 

  • Harding ML, Harding L, Goodfellow JW. A preliminary report of a simple rig to aid study of the functional anatomy of the cadaver human knee joint. J Biomech. 1977;10(8):517–23.

    Article  CAS  PubMed  Google Scholar 

  • Heim CS, Postak PD, Plaxton NA, Greenwald AS. Classification of mobile-bearing knee designs: mobility and constraint. J Bone Joint Surg Am. 2001;83-A Suppl 2(Pt 1):32–7.

    Article  CAS  PubMed  Google Scholar 

  • Koh YG, Lee JA, Chung PK, Kang KT. Computational analysis of customized cruciate retaining total knee arthroplasty restoration of native knee joint biomechanics. Artif Organs. 2019;43(5):504–14.

    Article  CAS  PubMed  Google Scholar 

  • Krause WR, Krug W, Miller J. Strength of the cement-bone interface. Clin Orthop Rel Res. 1982;163:290–9.

    Google Scholar 

  • Li G, DeFrate LE, Zayontz S, Park SE, Gill TJ. The effect of tibiofemoral joint kinematics on patellofemoral contact pressures under simulated muscle loads. J Orthop Res. 2004;22:801–6.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Judy. 2016. UCLA researchers team up with robot for solutions to debilitating knee injuries http://newsroom.ucla.edu/stories/ucla-researchers-team-up-with-robot-for-solutions-to-debilitating-knee-injuries

  • Maletsky LP, Hillberry BM. Simulating dynamic activities using a 5-axis simulator. J Biomech Eng. 2005;127:123–33.

    Article  PubMed  Google Scholar 

  • Markolf KL, Finerman GM, Amstutz HC. In vitro measurements of knee stability after bicondylar replacement. J Bone Joint Surg Am. 1979;61(4):547–57.

    Article  CAS  PubMed  Google Scholar 

  • Marra MA, Andersen MS, Damsgaard M, Koopman BFJM, Janssen D, Verdonschot N. Evaluation of a surrogate contact model in force-dependent kinematic simulations of Total knee replacement. J Biomech Eng. 2017;1:139(8).

    Google Scholar 

  • McCutchen CW. The frictional properties of animal joints. Wear. 1962;5(1):1–17.

    Article  Google Scholar 

  • Morrison J. The mechanics of the knee joint in relation to normal walking. J Biomech. 1970;3(1):51–61.

    Article  CAS  PubMed  Google Scholar 

  • Morrison J. Bioengineering analysis of force actions transmitted by the knee joint. Biomed Eng. 1968;3:164–70.

    Google Scholar 

  • Nogi J, Caldwell JW, Kauzlarich JJ, Thompson RC. Load testing of geometric and polycentric total knee replacements. Clin Orthop Relat Res. 1976;114:235–42.

    Google Scholar 

  • Oral E, Muratoglu OK. Vitamin E diffused, highly crosslinked UHMWPE: a review. Int Orthop. 2011;35(2):215–23.

    Article  PubMed  Google Scholar 

  • Postak PD, Heim CS, Greenwald AS. The role of constraint in contemporary modular knee designs. Surg Technol Int. 1994;3:541–6.

    CAS  PubMed  Google Scholar 

  • Rimnac C, Pruitt L. How do material properties influence wear and fracture mechanisms? J Am Acad Orthop Surg. 2008;16:S94–S100.

    Article  PubMed  Google Scholar 

  • Rowell SL, Reyes CR, Malchau H, Muratoglu OK. In vivo oxidative stability changes of highly cross-linked polyethylene bearings: an ex vivo investigation. J Arthroplast. 2015;30(10):1828–34.

    Article  Google Scholar 

  • Rullkoetter PJ, Fitzpatrick CK, Clary CW. How can we use computational modeling to improve Total knee arthroplasty? modeling stability and mobility in the implanted knee. J Am Acad Orthop Surg. 2017;25(Suppl 1):S33–s39.

    Article  PubMed  Google Scholar 

  • Schwiesau J, Schilling C, Kaddick C, et al. Definition and evaluation of testing scenarios for knee wear simulation under conditions of highly demanding daily activities. Med Eng Phys. 2013;35(5):591–600.

    Article  PubMed  Google Scholar 

  • Seedhom B, Dowson D, Wright V. Wear of solid phase formed high density polyethylene in relation to the life of artificial hips and knees. Wear. 1973;24(1):35–51.

    Article  Google Scholar 

  • Shaw J, Murray D. Knee joint simulator. Clin Orthop Rel Res. 1973;94:15–23.

    Article  Google Scholar 

  • Singerman R, Berilla J, Davy DT. Direct in vitro determination of the patellofemoral contact force for normal knees. J Biomech Eng. 1995;117:9–14.

    Article  Google Scholar 

  • Steiger RN, Muratoglu O, Lorimer M, Cuthbert AR, Graves SE. Lower prosthesis-specific 10-year revision rate with crosslinked than with non-crosslinked polyethylene in primary total knee arthroplasty: 386,104 procedures from the Australian Orthopaedic Association National Joint Replacement Registry. Acta Orthop. 2015;86(6):721–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Swanson SAV, Freeman MAR, Heath JC. Laboratory tests on total joint replacement prostheses. J Bone J Surg. 1973;55B(4):759–73.

    Article  Google Scholar 

  • Taylor M, Bryan R, Galloway F. Accounting for patient variability in finite element analysis of the intact and implanted hip and knee: a review. Int J Numer Methods Biomed Eng. 2013;29(2):273–92.

    Article  Google Scholar 

  • Van Citters DW, Currier JH, Currier BH, Titus AJ, Major MB, Abdul MP, Berry DJ. A retrieval analysis of 1385 tibial inserts for wear, damage and oxidation: What factors are driving performance? Scientific Exhibit SE 10: American Academy of Orthopaedic Surgeons, Annual Meeting March 2018, Las Vegas, NV.

    Google Scholar 

  • Varadarajan KM, Harry RE, Johnson T, Li G. Can in vitro systems capture the characteristic differences between the flexion-extension kinematics of the healthy and TKA knee? Med Eng Phys. 2009;31(8):899–906.

    Article  PubMed  Google Scholar 

  • Volz RG, Nisbet JK, Lee RW, McMurtry MG. The mechanical stability of various noncemented tibial components. Clin Orthop Relat Res. 1988;226:38–42.

    Google Scholar 

  • Walker PS, Blunn GW, Broome DR, et al. A knee simulating machine for performance evaluation of total knee replacements. J Biomech. 1997;30(1):83–9.

    Article  CAS  PubMed  Google Scholar 

  • Walker PS, Blunn GW, Perry JP, et al. Methodology for long-term wear testing of total knee replacements. Clin Orthop Relat Res. 2000;372:290–301.

    Article  Google Scholar 

  • Walker PS, Greene D, Reilly D, Thatcher J, Ben-Dov M, Ewald FC. Fixation of tibial components of knee prostheses. J Bone Joint Surg Am. 1981;63(2):258–67.

    Article  CAS  PubMed  Google Scholar 

  • Walker PS, Hsieh HH. Conformity in condylar replacement knee prosthesis. J Bone Joint Surg. 1977;59(2):222–8.

    Article  CAS  Google Scholar 

  • Walker PS, Ranawat C, Insall J. Fixation of the tibial components of condylar replacement knee prostheses. J Biomech. 1976;9(4):269–75.

    Article  CAS  PubMed  Google Scholar 

  • Walker PS, Wang C-J, Masse Y. Joint laxity as a design criterion for the design of condylar knee prostheses. Conference on total knee replacement, Institution of Mechanical Engineers, London UK, 16–18 Sept 1974.

    Google Scholar 

  • White BF, D’Lima D, Drueding AC, Cox J, Carignan FJ. A simulator study of TKR kinematics using modeled soft-tissue constraint: virtual soft-tissue control for knee simulation. In: Wear of Articulating Surfaces: Understanding Joint Simulation. West Conshohocken: ASTM International; 2006.

    Google Scholar 

  • Whiteside LA, Pafford J. Load transfer characteristics of a noncemented total knee arthroplasty. Clin orthop rel res. 1989;239:168–77.

    Google Scholar 

  • Willing R, Walker PS. Measuring the sensitivity of total knee replacement kinematics and laxity to soft tissue imbalances. J Biomech. 2018;77:62–8.

    Article  PubMed  Google Scholar 

  • Zavatsky AB. A kinematic-freedom analysis of a flexed knee stance testing rig. J Biomech. 1997;30(3):277–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walker, P.S. (2020). Testing and Tribology. In: The Artificial Knee. Springer, Cham. https://doi.org/10.1007/978-3-030-38171-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38171-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38170-7

  • Online ISBN: 978-3-030-38171-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics