Skip to main content

Multi-fidelity Metamodels Nourished by Reduced Order Models

  • Chapter
  • First Online:
Virtual Design and Validation

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 93))

  • 513 Accesses

Abstract

Engineering simulation provides better designed products by allowing many options to be quickly explored and tested. In that context, the computational time is a strong issue because using high-fidelity direct resolution solvers is not always suitable. Metamodels are commonly considered to explore design options without computing every possible combination of parameters, but if the behavior is nonlinear, a large amount of data is required to build this metamodel. A possibility is to use further data sources to generate a multi-fidelity surrogate model by using model reduction. Model reduction techniques constitute one of the tools to bypass the limited calculation budget by seeking a solution to a problem on a reduced-order basis (ROB). The purpose of this study is an online method for generating a multi-fidelity metamodel nourished by calculating the quantity of interest from the basis generated on-the-fly with the LATIN-PGD framework for elasto-viscoplastic problems. Low-fidelity (LF) fields are obtained by stopping the solver before convergence, and high-fidelity (HF) information is obtained with converged solutions. In addition, the solver ability to reuse information from previously calculated PGD basis is exploited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharyya, M., Fau, A., Nackenhorst, U., Néron, D., & Ladevèze, P. (2017). A LATIN-based model reduction approach for the simulation of cycling damage. Computational Mechanics, 1–19. https://doi.org/10.1007/s00466-017-1523-z.

  2. Chinesta, F., Keunings, R., & Leygue, A. (2014). The proper generalized decomposition for advanced numerical simulations. In SpringerBriefs in applied sciences and technology. Cham: Springer International Publishing.

    Google Scholar 

  3. Courrier, N., Boucard, P. A., & Soulier, B. (2016). Variable-fidelity modeling of structural analysis of assemblies. Journal of Global Optimization, 64(3), 577–613. https://doi.org/10.1007/s10898-015-0345-9.

    Article  MathSciNet  MATH  Google Scholar 

  4. Forrester, A. I., Bressloff, N. W., & Keane, A. J. (2006). Optimization using surrogate models and partially converged computational fluid dynamics simulations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462(2071), 2177–2204. https://doi.org/10.1098/rspa.2006.1679.

    Article  MATH  Google Scholar 

  5. Forrester, A. I. J., Keane, A. J., & Bressloff, N. W. (2006). Design and analysis of “noisy” computer experiments. AIAA Journal, 44(10), 2331–2339.

    Article  Google Scholar 

  6. Han, Z., Zimmerman, R., & Görtz, S. (2012). Alternative cokriging method for variable fidelity surrogate modeling. AIAA Journal, 50(5), 1205–1210. https://doi.org/10.2514/1.J051243.

    Article  Google Scholar 

  7. Jones, D. R. (2001). A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 21(4), 345–383. https://doi.org/10.1023/A:1012771025575.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kramer, B., Marques, A.N., Peherstorfer, B., Villa, U., & Willcox, K. (2019). Multifidelity probability estimation via fusion of estimators. Journal of Computational Physics, 392, 385–402 . http://www.sciencedirect.com/science/article/pii/S0021999119303249.

  9. Ladevèze, P. (1999). Nonlinear computational structural mechanics: New approaches and non-incremental methods of calculation. In Mechanical engineering series. Springer.

    Google Scholar 

  10. Lemaitre, J., & Chaboche, J. L. (1994). Mechanics of solid materials. Cambridge University Press.

    Google Scholar 

  11. Maday, Y., & Ronquist, E. (2004). The reduced basis element method: Application to a thermal fin problem. SIAM Journal on Scientific Computing, 26(1), 240–258. https://doi.org/10.1137/S1064827502419932.

    Article  MathSciNet  MATH  Google Scholar 

  12. McKay, M. D., Beckman, R. J., & Conover, W. J. (2000). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 42(1), 55–61.

    Article  Google Scholar 

  13. Rasmussen, C. E., & Williams, C. K. (2004). Gaussian processes in machine learning. Lecture Notes in Computer Science, 3176, 63–71.

    Article  Google Scholar 

  14. Relun, N., Néron, D., & Boucard, P. A. (2013). A model reduction technique based on the PGD for elastic-viscoplastic computational analysis. Computational Mechanics, 51(1), 83–92. https://doi.org/10.1007/s00466-012-0706-x.

    Article  MathSciNet  MATH  Google Scholar 

  15. Vitse, M. (2016) Model-order reduction for the parametric analysis of damage in reinforced concrete structures (Ph.D. thesis). Université Paris-Saclay.

    Google Scholar 

  16. Zimmerman, D. L., & Holland, D. M. (2005). Complementary co-kriging: Spatial prediction using data combined from several environmental monitoring networks. Environmetrics, 16, 219–234.

    Article  MathSciNet  Google Scholar 

  17. Zimmermann, R., & Han, Z. H. (2010). Simplified cross-correlation estimation for multi-fidelity surrogate cokriging models. Advances and Applications in Mathematical Sciences, 7(2), 181–201.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.-A. Boucard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nachar, S., Boucard, PA., Néron, D., Nackenhorst, U., Fau, A. (2020). Multi-fidelity Metamodels Nourished by Reduced Order Models. In: Wriggers, P., Allix, O., Weißenfels, C. (eds) Virtual Design and Validation. Lecture Notes in Applied and Computational Mechanics, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-030-38156-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38156-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38155-4

  • Online ISBN: 978-3-030-38156-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics