Skip to main content

A Semi-incremental Scheme for Cyclic Damage Computations

  • Chapter
  • First Online:
Virtual Design and Validation

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 93))

  • 518 Accesses

Abstract

High fidelity structural problems that involve nonlinear material behaviour, when subjected to cyclic loading, usually demand infeasible computational resources; this demonstrates the need for efficient model order reduction (MOR) techniques in order to shrink these demands to fit into the available means. The solution of cyclic damage problems in a model order reduction framework is investigated in this chapter. A semi-incremental framework based on a large time increment (LATIN) approach is proposed to tackle cyclic damage computations under variable amplitude and frequency loadings. The involved MOR approach provides a low-rank approximation in terms of proper generalised decomposition (PGD) of the solution. The generated PGD basis can be interpreted as a set of linear subspaces altered on the fly to the current problem settings. The adaptation of PGD to new settings is based on a greedy algorithm that may lead to a large-sized reduced order basis (ROB). Thus, different orthonormalisation and compression techniques were evaluated to ensure the optimality of the generated ROB in [1] and will be overviewed here. The proposed implementation and a displacement formulated finite element (FE) incremental framework are compared to illustrate their differences in terms of memory footprint and computational time. Numerical examples with variable loadings are discussed, and a typical implementation is provided as open-source code, available at https://gitlab.com/shadialameddin/romfem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alameddin, S., Fau, A., Néron, D., Ladevèze, P., & Nackenhorst, U. (2019). Toward optimality of proper generalised decomposition bases. Mathematical Computational Applications, 24(1), 30.

    Article  MathSciNet  Google Scholar 

  2. Lemaitre, J., & Desmorat, R. (2005). Engineering damage mechanics. Berlin, Heidelberg: Springer.

    Google Scholar 

  3. Sobczyk, K., & Spencer, B, Jr. (1992). Random fatigue: From data to theory. Cambridge: Academic Press.

    MATH  Google Scholar 

  4. Wang, Q., Berard, J., Rathery, S., & Bathias, C. (1999). High-cycle fatigue crack initiation and propagation behaviour of high-strength spring steel wires. Fatigue and Fracture of Engineering Materials and Structure, 22(8), 673–677.

    Article  Google Scholar 

  5. Deng, G., Tu, S., Zhang, X., Wang, Q., & Qin, C. (2015). Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169. Engineering Fracture Mechanics, 134, 433–450.

    Article  Google Scholar 

  6. Schijve, J., & Yarema, S. (2003). Fatigue of structures and materials in the 20th century and the state of the art. Materials Science, 39(3), 307–333.

    Article  Google Scholar 

  7. Schijve, J. (2001). Fatigue of structures and materials. Berlin: Springer.

    MATH  Google Scholar 

  8. F. Chinesta, A. Huerta, G. Rozza, K. Willcox. (2018). Encyclopedia of computational mechanics (Vol. 3, chapter Model Redu). Wiley, New York.

    Google Scholar 

  9. Giacoma, A., Dureisseix, D., Gravouil, A., & Rochette, M. (2015). Toward an optimal a priori reduced basis strategy for frictional contact problems with LATIN solver. Computer Methods in Applied Mechanics and Engineering, 283, 1357–1381.

    Article  MathSciNet  Google Scholar 

  10. Bhattacharyya, M., Fau, A., Nackenhorst, U., Néron, D., & Ladevèze, P. (2018). A LATIN-based model reduction approach for the simulation of cycling damage. Computer Mechanics, 62(4), 725–743.

    Article  MathSciNet  Google Scholar 

  11. Niroomandi, S., González, D., Alfaro, I., Bordeu, F., Leygue, A., Cueto, E., et al. (2013). Real-time simulation of biological soft tissues: A PGD approach. International Journal for Numerical Methods in Biomedical Engineering, 29(5), 586–600.

    Article  MathSciNet  Google Scholar 

  12. Heyberger, C., Boucard, P., & Néron, D. (2013). A rational strategy for the resolution of parametrized problems in the PGD framework. Computer Methods in Applied Mechanics and Engineering, 259, 40–49.

    Article  MathSciNet  Google Scholar 

  13. Bhattacharyya, M., Fau, A., Nackenhorst, U., Néron, D., & Ladevèze, P. (2018). A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering, 340, 630–656.

    Article  MathSciNet  Google Scholar 

  14. Cline, A., & Dhillon, I. (2013). Computation of the singular value decomposition. Boca Raton: CRC Press.

    Book  Google Scholar 

  15. Kerfriden, P., Gosselet, P., Adhikari, S., & Bordas, S. (2011). Bridging proper orthogonal decomposition methods and augmented Newton-Krylov algorithms: An adaptive model order reduction for highly nonlinear mechanical problems. Computer Methods in Applied Mechanics and Engineering, 200(5–8), 850–866.

    Article  MathSciNet  Google Scholar 

  16. Chinesta, F., & Ladevèze, P. (2014). Separated rrepresentations and PGD-based model reduction. In CISM International Centre for Mechanical Sciences (Vol. 554). Vienna: Springer.

    Google Scholar 

  17. Nasri, M., Robert, C., Ammar, A., El Arem, S., & Morel, F. (2018). Proper generalized decomposition (PGD) for the numerical simulation of polycrystalline aggregates under cyclic loading. Comptes Rendus Mécanique, 346(2), 132–151.

    Article  Google Scholar 

  18. El Halabi, F., González, D., Sanz-Herrera, J., & Doblaré, M. (2016). A PGD-based multiscale formulation for non-linear solid mechanics under small deformations. Computer Methods in Applied Mechanics and Engineering, 305, 806–826.

    Article  MathSciNet  Google Scholar 

  19. Ladevèze, P. (1999). Nonlinear computational structural mechanics., Mechanical Engineering Series New York: Springer.

    Book  Google Scholar 

  20. Ladevèze, P. (2016). On reduced models in nonlinear solid mechanics. European Journal of Mechanics—A/Solids, 60, 227–237.

    Article  MathSciNet  Google Scholar 

  21. Bhattacharyya, M. (2018). A model reduction technique in space and time for fatigue simulation (Ph.D. thesis). Leibniz Universität Hannover, Université Paris Saclay.

    Google Scholar 

  22. Holzapfel, G. (2000). Nonlinear solid mechanics: A continuum approach for engineering. New York: Wiley.

    MATH  Google Scholar 

  23. Lemaitre, J. (1992). A course on damage mechanics. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  24. Cueto, E., González, D., & Alfaro, I. (2016). Proper generalized decompositions. Springer International Publishing.

    Google Scholar 

  25. Chinesta, F., Keunings, R., & Leygue, A. (2014). The proper generalized decomposition for advanced numerical simulations: A primer. Springer International Publishing.

    Google Scholar 

  26. Gellin, S., & Pitarresi, J. (1988). Nonlinear analysis using temporal finite elements. Engineering Analysis, 5(3), 126–132.

    Article  Google Scholar 

  27. Allix, O., Ladevèze, P., Gilletta, D., & Ohayon, R. (1989). A damage prediction method for composite structures. International Journal for Numerical Methods in Engineering, 27(2), 271–283.

    Article  MathSciNet  Google Scholar 

  28. Allix, O., & Vidal, P. (2002). A new multi-solution approach suitable for structural identification problems. Computer Methods in Applied Mechanics and Engineering, 191(25–26), 2727–2758.

    Article  MathSciNet  Google Scholar 

  29. Vandoren, B., De Proft, K., Simone, A., & Sluys, L. (2013). A novel constrained LArge Time INcrement method for modelling quasi-brittle failure. Computer Methods in Applied Mechanics and Engineering, 265, 148–162.

    Article  MathSciNet  Google Scholar 

  30. Bebendorf, M. (2008). Hierarchical matrices: A means to efficiently solve elliptic boundary value problems. Berlin, Heidelberg: Springer.

    MATH  Google Scholar 

  31. Eckart, C., & Young, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika, 1(3), 211–218.

    Article  Google Scholar 

  32. Halko, N., Martinsson, P., & Tropp, J. (2011). Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2), 217–288.

    Article  MathSciNet  Google Scholar 

  33. Golub, G., & Van Loan, C. (1996). Matrix computations (3rd ed.). Baltimore: The Johns Hopkins University Press.

    MATH  Google Scholar 

  34. Bach, C., Ceglia, D., Song, L., & Duddeck, F. (2019). Randomized low-rank approximation methods for projection-based model order reduction of large nonlinear dynamical problems. International Journal for Numerical Methods in Engineering, 118(4), 209–241.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was funded by the German Research Foundation/Deutsche Forschungsgemeinschaft (DFG) through the International Research Training Group (IRTG) 1627.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadi Alameddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alameddin, S., Fau, A., Néron, D., Ladevèze, P., Nackenhorst, U. (2020). A Semi-incremental Scheme for Cyclic Damage Computations. In: Wriggers, P., Allix, O., Weißenfels, C. (eds) Virtual Design and Validation. Lecture Notes in Applied and Computational Mechanics, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-030-38156-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38156-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38155-4

  • Online ISBN: 978-3-030-38156-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics