Skip to main content

Phenotype, Niche Construction, and Natural Cellular Engineering

  • Chapter
  • First Online:
Cellular-Molecular Mechanisms in Epigenetic Evolutionary Biology

Abstract

The conventional view of phenotype is that it is an epiphenomenon directly driven by selection. Instead, in a modern context based on the primacy of the unicellular form, phenotype can be re-appraised as a means toward obtaining contemporaneous genetic marks (Torday and Miller 2016c). When the evolutionary imperative is appropriately understood as the strategic derivation of epigenetic marks from the environment and their appropriate assortment through the EUC, its evolutionary meaning shifts away from the natural assumption that its impact necessarily relates to the direct survival advantage of the offspring (Wang et al. 2017). In part, this reflects that epigenetic effects need not be immediately apparent. Although the actual identity of the mechanism that determines the distribution of the epigenetic marks from germ cells to somatic cells is not completely known, it is clear that the unicellular recapitulation is the dominant governing phase, with further adjustments during embryogenesis (Gapp and Bohacek 2018; Wang et al. 2017). In this context, pleiotropy (the production by a single gene of two or more apparently unrelated effects) (Williams 1957), heterochrony (the developmental change in the timing or rate of events, leading to changes in size and shape of organisms) (Torday 2016a), and neoteny (the retention of juvenile features in the adult organism) (Skulachev et al. 2017; Godfrey and Sutherland 1996) can each be understood as mechanisms through which epigenetic inheritance might be governed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baluška F, Mancuso S (2009) Deep evolutionary origins of neurobiology: turning the essence of ‘neural’ upside-down. Commun Integr Biol 2:60–65

    Article  PubMed  PubMed Central  Google Scholar 

  • Ben-Jacob E (2009) Learning from bacteria about natural information processing. Ann N Y Acad Sci 1178:78–90

    CAS  PubMed  Google Scholar 

  • Ben-Jacob E, Levine H (2006) Self-engineering capabilities of bacteria. J R Soc Interface 3:197–214

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681

    Article  CAS  PubMed  Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    Article  CAS  PubMed  Google Scholar 

  • Black SG, Arnaud F, Palmarini M, Spencer TE (2010) Endogenous retroviruses in trophoblast differentiation and placental development. Am J Reprod Immunol 64:255–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporale LH (2003) Darwin in the genome: molecular strategies in biological evolution. McGraw-Hill, New York

    Google Scholar 

  • Caporale LH, Doyle J (2013) In Darwinian evolution, feedback from natural selection leads to biased mutations. Ann N Y Acad Sci 1305:18–28

    Article  CAS  PubMed  Google Scholar 

  • Colson P, Ravaux I, Tamalet C, Glazunova O, Baptiste E, Chabriere E, Wiedemann A, Lacabaratz C, Chefrour M, Picard C (2014) HIV infection en route to endogenization: two cases. Clin Microbiol Infect 20:1280–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danchin É, Charmantier A, Champagne FA, Mesoudi A, Pujol B, Blanchet S (2011) Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat Rev Genet 12:475–486

    Article  CAS  PubMed  Google Scholar 

  • Fedoroff NV (2012) Transposable elements, epigenetics, and genome evolution. Science 338:758–767

    Article  CAS  PubMed  Google Scholar 

  • Forterre P (2011) Manipulation of cellular syntheses and the nature of viruses: the virocell concept. C R Chim 14:392–399

    Article  CAS  Google Scholar 

  • Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447:413–417

    Article  CAS  PubMed  Google Scholar 

  • Gapp K, Bohacek J (2018) Epigenetic germline inheritance in mammals: looking to the past to understand the future. Genes Brain Behav 17:e12407

    Article  CAS  PubMed  Google Scholar 

  • Gifford WD, Pfaff SL, Macfarlan TS (2013) Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol 23:218–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godfrey LR, Sutherland MR (1996) Paradox of peramorphic paedomorphosis: heterochrony and human evolution. Am J Phys Anthropol 99:17–42

    Article  CAS  PubMed  Google Scholar 

  • Heylighen F (2001) The science of self-organization and adaptivity. Encycl Life Support Syst 5:253–280

    Google Scholar 

  • Heylighen F (2015) Stigmergy as a universal coordination mechanism: components, varieties and applications. In: Lewis T, Marsh L (eds) Human stigmergy: theoretical developments and new applications. Springer, New York

    Google Scholar 

  • Jablonka E, Lamb MJ (1999) Epigenetic inheritance and evolution: the Lamarckian dimension. Oxford University Press, Oxford

    Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Wolf YI (2009) Is evolution Darwinian or/and Lamarckian? Biol Direct 4:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laland KN, Sterelny K, Odling-Smee J, Hoppitt W, Uller T (2011) Cause and effect in biology revisited: is Mayr’s proximate-ultimate dichotomy still useful? Science 334:1512–1516

    Article  CAS  PubMed  Google Scholar 

  • Laland KN, Uller T, Feldman MW, Sterelny K, Müller GB, Moczek A, Jablonka E, Odling-Smee J (2015) The extended evolutionary synthesis: its structure, assumptions and predictions. Proc R Soc B 282:20151019

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamm E (2014) The genome as a developmental organ. J Physiol 592:2283–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClintock B (1993) The significance of responses of the genome to challenge. Science 226:792–801

    Article  Google Scholar 

  • Meaney MJ (2010) Epigenetics and the biological definition of gene× environment interactions. Child Dev 81:41–79

    Article  PubMed  Google Scholar 

  • Merhej V, Raoult D (2012) Rhizome of life, catastrophes, sequence exchanges, gene creations, and giant viruses: how microbial genomics challenges Darwin. Front Cell Infect Microbiol 2:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller WB (2013) The microcosm within: evolution and extinction in the hologenome. Universal Publishers, Boca Raton

    Google Scholar 

  • Miller WB (2016a) Cognition, information fields and hologenomic entanglement: evolution in light and shadow. Biology (Basel) 5(2):21

    CAS  Google Scholar 

  • Miller WB (2016b) The eukaryotic microbiome: origins and implications for fetal and neonatal life. Front Pediatr 4:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller WB (2017) Biological information systems: evolution as cognition-based information management. Prog Biophys Mol Biol 134:1–36

    Article  PubMed  Google Scholar 

  • Miller WB Jr, Torday JS (2018) Four domains: the fundamental unicell and Post-Darwinian cognition-based evolution. Prog Biophys Mol Biol 140:49–73

    Article  PubMed  Google Scholar 

  • Miller WB Jr, Torday JS (2019) Reappraising the exteriorization of the mammalian testes through evolutionary physiology. Commun Integr Biol 12:38–54

    CAS  PubMed  Google Scholar 

  • Miller WB Jr, Torday JS, Baluška F (2019) Biological evolution as defense of ‘self’. Prog Biophys Mol Biol 142:54–74

    Article  PubMed  Google Scholar 

  • Miller WB, Torday JS (2017) A systematic approach to cancer: evolution beyond selection. Clin Transl Med 3:2

    Google Scholar 

  • Mita P, Boeke JD (2016) How retrotransposons shape genome regulation. Curr Opin Genet 37:90–100

    Article  CAS  Google Scholar 

  • Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction: the neglected process in evolution. Princeton University Press, Princeton

    Google Scholar 

  • Oliver KR, Greene WK (2009) Transposable elements: powerful facilitators of evolution. BioEssays 31:703–714

    Article  CAS  PubMed  Google Scholar 

  • Oliver KR, Greene WK (2012) Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis. Ecol Evol 2:2912–2933

    Article  PubMed  PubMed Central  Google Scholar 

  • Robbez-Masson L, Rowe HM (2015) Retrotransposons shape species-specific embryonic stem cell gene expression. Retrovirology 12:45–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan FP (2004) Human endogenous retroviruses in health and disease: a symbiotic perspective. J R Soc Med 97:560–565

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan FP (2009) Virolution. Harper Collins Publishers, London

    Google Scholar 

  • Schlesinger S, Goff SP (2015) Retroviral transcriptional regulation and embryonic stem cells: war and peace. Mol Gen Genet 35:770–777

    Google Scholar 

  • Schrader L, Kim JW, Ence D, Zimin A, Klein A, Wyschetzki K, Weichselgartner T, Kemena C, Stökl J, Schultner E, Wurm Y, (2014) Transposable element islands facilitate adaptation to novel environments in an invasive species. Nat. Commun. 5, 5495

    Google Scholar 

  • Shapiro JA (2011) Evolution: a view from the 21st century. FT Press, Upper Saddle River

    Google Scholar 

  • Shapiro JA (2016a) The basic concept of the read–write genome: mini-review on cell-mediated DNA modification. Biosystems 140:35–37

    Article  CAS  PubMed  Google Scholar 

  • Shapiro JA (2016b) Nothing in evolution makes sense except in the light of genomics: read–write genome evolution as an active biological process. Biology 5(2):E27

    Article  CAS  PubMed  Google Scholar 

  • Shapiro JA (2017a) Biological action in read–write genome evolution. Interface Focus 7:20160115

    PubMed  PubMed Central  Google Scholar 

  • Shapiro JA (2017b) Exploring the read-write genome: mobile DNA and mammalian adaptation. Crit Rev Biochem Mol Biol 52:1–17

    Article  CAS  PubMed  Google Scholar 

  • Shapiro JA (2017c) Living organisms author their read-write genomes in evolution. Biology 6(4):E42

    Article  CAS  PubMed  Google Scholar 

  • Sharma U, Sun F, Reichholf B, Herzog V, Ameres S, Rando O (2017) Small RNAs are trafficked from the epididymis to developing mammalian sperm. Dev Cell 46:481–494

    Article  CAS  Google Scholar 

  • Skinner M (2015) Environmental epigenetics and a unified theory of the molecular aspects of evolution: a Neo-Lamarckian concept that facilitates Neo-Darwinian evolution. Genome Biol Evol 7:1296–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skulachev VP, Holtze S, Vyssokikh MY, Bakeeva LE, Skulachev MV, Markov AV, Hildebrandt TB, Sadovnichii VA (2017) Neoteny, prolongation of youth: from naked mole rats to “naked apes” (humans). Physiol Rev 97:699–720

    Article  PubMed  Google Scholar 

  • Stotz K (2017) Why developmental niche construction is not selective niche construction: and why it matters. Interface Focus 7:20160157

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarlinton RE, Meers J, Young PR (2006) Retroviral invasion of the koala genome. Nature 442:79–81

    Article  CAS  PubMed  Google Scholar 

  • Theraulaz G, Bonabeau E (1999) A brief history of stigmergy. Artif Life 5:97–116

    Article  CAS  PubMed  Google Scholar 

  • Torday JS (2015a) The cell as the mechanistic basis for evolution. WIREs Syst Biol Med 7:275–284

    CAS  Google Scholar 

  • Torday JS (2015b) A central theory of biology. Med Hypotheses 85:49–57

    PubMed  PubMed Central  Google Scholar 

  • Torday JS (2016a) Heterochrony as diachronically modified cell-cell interactions. Biology (Basel) 5(1):4

    Google Scholar 

  • Torday JS (2016b) The cell as the first niche construction. Biology (Basel) 5(2):19

    Google Scholar 

  • Torday JS (2016c) Life is simple-biologic complexity is an epiphenomenon. Biology (Basel) 5(2):17

    Google Scholar 

  • Torday JS, Miller WB Jr (2016a) The unicellular state as a point source in a quantum biological system. Biology (Basel) 5(2):25

    Google Scholar 

  • Torday JS, Miller WB Jr (2016b) Biologic relativity: who is the observer and what is observed? Prog Biophys Mol Biol 121:29–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Torday JS, Miller WB Jr (2016c) Life is determined by its environment. Int J Astrobiol 15:345–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Torday JS, Miller WB Jr (2016e) On the evolution of the mammalian brain. Front Syst Neurosci 10:1–9

    Article  Google Scholar 

  • Torday JS, Miller WB Jr (2018a) The cosmologic continuum from physics to consciousness. Prog Biophys Mol Biol 140:41–48

    Article  PubMed  Google Scholar 

  • Torday JS, Miller WB Jr (2018b) A systems approach to physiologic evolution: from micelles to consciousness. J Cell Physiol 233:162–167

    Article  CAS  PubMed  Google Scholar 

  • Villarreal LP (1997) On viruses, sex, and motherhood. J Virol 71:859–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Zeng J, Lowe CB, Sellers RG, Salama SR, Yang M, Burgess SM, Brachmann RK, Haussler D (2007) Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein. Proc Natl Acad Sci 104:18613–18618

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu H, Sun Z (2017) Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans. Biol Rev Camb Philos Soc 92:2084–2111

    Article  PubMed  Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411

    Article  Google Scholar 

  • Witzany G (2009) Noncoding RNAs: persistent viral agents as modular tools for cellular needs. Ann N Y Acad Sci 1178:244–267

    Article  CAS  PubMed  Google Scholar 

  • Witzany G (2010) Biocommunication and natural genome editing. World J Biol Chem 1:348

    PubMed  PubMed Central  Google Scholar 

  • Witzany G (2011) The agents of natural genome editing. J Mol Cell Biol 3:181–189

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torday, J., Miller Jr., W. (2020). Phenotype, Niche Construction, and Natural Cellular Engineering. In: Cellular-Molecular Mechanisms in Epigenetic Evolutionary Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-38133-2_11

Download citation

Publish with us

Policies and ethics