Skip to main content

Full-Field Strain Measurement of the Contact Patch via the Inside Tyre Surface

  • Conference paper
  • First Online:
Advances in Dynamics of Vehicles on Roads and Tracks (IAVSD 2019)

Abstract

The tyre is the only interface between the vehicle and the road and has thus been the subject of many research studies. An important aspect of tyre research is the development of a smart tyre which can indirectly determine parameters representing the state of the vehicle such as the tyre forces and side-slip angle. In this paper Digital Image Correlation (DIC) is used on the inside surface of the tyre to produce full-field strain measurements of the inside surface of a tyre in contact with the road. The study aims to measure and understand the full-field strain measurements caused by various loading cases with the aim of smart tyre development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braghin, F., Brusarosco, M., Cheli, F., Cigada, A., Manzoni, S., Mancosu, F.: Measurement of contact forces and patch features by means of accelerometers fixed inside the tire to improve future car active control. Veh. Syst. Dyn. 44, 3–13 (2006)

    Article  Google Scholar 

  2. Tuononen, A.: Optical position detection to measure tyre carcass deflections. Veh. Syst. Dyn. 46, 471–481 (2008)

    Article  Google Scholar 

  3. Erdogan, G., Alexander, L., Rajamani, R.: Estimation of tire-road friction coefficient using a novel wireless piezoelectric tire sensor. IEEE Sens. J. 11, 267 (2011)

    Article  Google Scholar 

  4. Pohl, A., Steindl, R., Reindl, L.: The “intelligent tire” utilizing passive saw sensors - measurement of tire friction. IEEE Instrum. Meas. 48, 1041 (1999)

    Article  Google Scholar 

  5. Matsuzaki, R., Todoroki, A.: Passive wireless strain monitoring of actual tire using capacitance-resistance change and multiple spectral features. Sens. Actuators 126, 277–286 (2006)

    Article  Google Scholar 

  6. Matsuzaki, R., Todoroki, A.: Wireless flexible capacitive sensor based on ultra-flexible epoxy resin for strain measurement of automobile tires. Sens. Actuators 140, 32–42 (2007)

    Article  Google Scholar 

  7. Garcia-Pozuelo, D., Olatunbosun, O., Strano, S., Terzo, M.: A real-time physical model for strain-based intelligent tires. Sens. Actuators 288, 1–9 (2019)

    Article  Google Scholar 

  8. Green, R.: A non-contact method for sensing tire contact patch deformation using a monocular vision system and speckled image tracking (2011)

    Google Scholar 

  9. Hiraoka, N., Matsuzaki, R., Todoroki, A.: Concurrent monitoring of in-plane strain and out-of-plane displacement of tire using digital image correlation method. J. Solid Mech. Mate. Eng. 3, 1148 (1999)

    Article  Google Scholar 

  10. Guthrie, A.G., Botha, T.R., Els, P.S.: 3D contact patch measurement inside rolling tyres. J. Terrramech. 69, 13–21 (2016)

    Article  Google Scholar 

  11. Feldesi, F., Botha, T., Els, P.: Improvement of 3D contact patch measurement using cameras inside rolling tyres. In: ISTVS Conference Proceedings, no. 20 (2018)

    Google Scholar 

  12. Botha, T., Els, P.: Digital image correlation techniques for measuring tyre-road interface parameters: part 1 - side-slip angle measurement on rough terrain. J. Terrramech. 61, 87–100 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theunis R. Botha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pegram, M.S., Botha, T.R., Els, P.S. (2020). Full-Field Strain Measurement of the Contact Patch via the Inside Tyre Surface. In: Klomp, M., Bruzelius, F., Nielsen, J., Hillemyr, A. (eds) Advances in Dynamics of Vehicles on Roads and Tracks. IAVSD 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-38077-9_212

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38077-9_212

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38076-2

  • Online ISBN: 978-3-030-38077-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics