Skip to main content

Realization of Adjustable Damping Characteristic Based on a Magnetorheological Damper

  • Conference paper
  • First Online:
Advances in Dynamics of Vehicles on Roads and Tracks (IAVSD 2019)

Abstract

In order to improve the efficiency of damping characteristic adjustment for vehicle suspension shock absorber, the control system with a magnetorheological (MR) damper was proposed to realize the adjustable damping characteristic. The Bingham model of a MR damper was establish based on the damping force of the MR damper under different sinusoidal excitations and different currents. The force-velocity curves of dampers were described with a mathematics model. The whole slope and the curvature of the damping force-velocity curves were represented by separate parameters and could be adjusted independently. An embedded control system was developed to adjust damping characteristic with a speed sensor, a microprocessor, a damping characteristic adjustment module, a MR damper and a current driver. The current driver was designed by taking the voltage Pulse Width Modulation (PWM) as the excitation signal. The verification experiment shows that the overall slope and the rate of curvature change for the peak damping force-velocity curve could be adjusted in a little time delay by this control system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, W., Pan, H., Gao, H.: Filter-based adaptive vibration control for active vehicle suspensions with electrohydraulic actuators. IEEE Trans. Veh. Technol. 65(6), 4619–4626 (2016)

    Article  Google Scholar 

  2. Sun, X., Jing, X.: Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure. Mech. Syst. Signal Process. 66, 723–742 (2016)

    Article  Google Scholar 

  3. Duym, S.W.R.: Simulation tools, modelling and identification, for an automotive shock absorber in the context of vehicle dynamics. Veh. Syst. Dyn. 33(4), 261–285 (2000)

    Article  Google Scholar 

  4. Choi, S.B., Lee, H.S., Park, Y.P.: H8 control performance of a full-vehicle suspension featuring magnetorheological dampers. Veh. Syst. Dyn. 38(5), 341–360 (2002)

    Article  Google Scholar 

  5. Zong, L.H., Gong, X.L., Xuan, S.H., et al.: Semi-active H∞ control of high-speed railway vehicle suspension with magnetorheological dampers. Veh. Syst. Dyn. 51(5), 600–626 (2013)

    Article  Google Scholar 

  6. Cho, B., Lee, D., Lee, D., et al.: Design of a current driver controller for MR CDC dampers. In: 2007 International Conference on Control, Automation and Systems, pp. 283–286. IEEE (2007)

    Google Scholar 

  7. Strecker, Z., Roupec, J., Mazurek, I., et al.: Design of magnetorheological damper with short time response. J. Intell. Mater. Syst. Struct. 26(14), 1951–1958 (2015)

    Article  Google Scholar 

  8. Zhang, H., Wang, E., Zhang, N., et al.: Semi-active sliding mode control of vehicle suspension with magneto-rheological damper. Chin. J. Mech. Eng. 28(1), 63–75 (2015)

    Article  Google Scholar 

  9. Tang, X., Du, H., Sun, S., et al.: Takagi-Sugeno fuzzy control for semi-active vehicle suspension with a magnetorheological damper and experimental validation. IEEE/ASME Trans. Mechatron. 22(1), 291–300 (2017)

    Article  Google Scholar 

  10. Kasprzyk, J., Wyrwał, J., Krauze, P.: Automotive MR damper modeling for semi-active vibration control. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 500–505. IEEE (2014)

    Google Scholar 

  11. Spencer Jr., B.F., Dyke, S.J., Sain, M.K., et al.: Phenomenological model for magnetorheological dampers. J. Eng. Mech. 123(3), 230–238 (1997)

    Article  Google Scholar 

  12. Rossi, A., Orsini, F., Scorza, A., et al.: A review on parametric dynamic models of magnetorheological dampers and their characterization methods. Actuators 7(2), 16 (2018)

    Article  Google Scholar 

  13. Zhu, X., Jing, X., Cheng, L.: Magnetorheological fluid dampers: a review on structure design and analysis. J. Intell. Mater. Syst. Struct. 23(8), 839–873 (2012)

    Article  Google Scholar 

  14. Stanway, R., Sproston, J.L., Stevens, N.G.: Non-linear modelling of an electro-rheological vibration damper. J. Electrostat. 20(2), 167–184 (1987)

    Article  Google Scholar 

  15. Strecker, Z., Mazůrek, I., Roupec, J., et al.: Influence of MR damper response time on semiactive suspension control efficiency. Meccanica 50(8), 1949–1959 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Lu, H., Xu, Z., He, Y. (2020). Realization of Adjustable Damping Characteristic Based on a Magnetorheological Damper. In: Klomp, M., Bruzelius, F., Nielsen, J., Hillemyr, A. (eds) Advances in Dynamics of Vehicles on Roads and Tracks. IAVSD 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-38077-9_194

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38077-9_194

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38076-2

  • Online ISBN: 978-3-030-38077-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics