Skip to main content

Influence of System Dynamics in Brake Blending Strategies for Electric Vehicles

  • Conference paper
  • First Online:
Advances in Dynamics of Vehicles on Roads and Tracks (IAVSD 2019)

Abstract

Regenerative and friction braking blending strategies need to consider both system dynamics in order to optimize their performance. Usually, the priority in electric vehicles is battery regeneration through electric braking instead of friction braking. This work studies the dynamics of both systems and proposes an optimized brake-blending strategy. The goal is to maximize regeneration without affecting safety. Both dynamics are studied separately with commercial systems: electric drivetrain and friction brake-by-wire. The proposed strategy takes into account temporary response as well as the physical limitations of the systems. Therefore, this strategy limits the influence of the slowest system, in our case, the electric one, during the braking process while maximizing battery regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oleksowicz, S.A., et al.: Regenerative braking strategies, vehicle safety and stability control systems: critical use-case proposals. Veh. Syst. Dyn. 51(5), 684–699 (2013)

    Article  Google Scholar 

  2. Xiao, B., Lu, H., Wang, H., Ruan, J., Zhang, N.: Enhanced regenerative braking strategies for electric vehicles: dynamic performance and potential analysis. Energies 10(11), 1875 (2017)

    Article  Google Scholar 

  3. Ko, J., et al.: Development of regenerative braking co-operative control system for automatic transmission-based hybrid electric vehicle using electronic wedge brake. World Electr. Veh. J. 6(2), 278–282 (2013)

    Article  Google Scholar 

  4. Arnold, G.: Simulation of advanced regenerative braking strategies in a series plug-in hybrid electric vehicle. SAE Technical Paper Series, vol. 1 (2017)

    Google Scholar 

  5. Zhao, D., Chu, L., Xu, N., Sun, C., Xu, Y.: Development of a cooperative braking system for front-wheel drive electric vehicles. Energies 11(2), 378 (2018)

    Article  Google Scholar 

  6. Kwon, M., Park, J., Gwak, G.S., Huh, J., Hwang, S.H.: Cooperative control algorithm for friction and regenerative braking systems considering temperature characteristics. World Electr. Veh. J. 7(2), 287–298 (2015)

    Article  Google Scholar 

  7. Dadashnialehi, A., Bab-Hadiashar, A., Cao, Z., Kapoor, A.: Intelligent sensorless ABS for in-wheel electric vehicles. IEEE Trans. Ind. Electron. 61(4), 1957–1969 (2014)

    Article  Google Scholar 

  8. Castillo Aguilar, J.J., Pérez Fernández, J., Velasco García, J.M., Cabrera Carrillo, J.A.: Regenerative intelligent brake control for electric motorcycles. Energies 10, 1–16 (2017)

    Article  Google Scholar 

  9. Lv, C., Zhang, J., Li, Y.: Extended-Kalman-filter-based regenerative and friction blended braking control for electric vehicle equipped with axle motor considering damping and elastic properties of electric powertrain. Veh. Syst. Dyn. 52(11), 1372–1388 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Pérez Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fernández, J.P., García, J.M.V., Vargas, M.G.A., Aguilar, J.J.C., Carrillo, J.A.C. (2020). Influence of System Dynamics in Brake Blending Strategies for Electric Vehicles. In: Klomp, M., Bruzelius, F., Nielsen, J., Hillemyr, A. (eds) Advances in Dynamics of Vehicles on Roads and Tracks. IAVSD 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-38077-9_178

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38077-9_178

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38076-2

  • Online ISBN: 978-3-030-38077-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics