Skip to main content

Molecular Regulation of Sperm Production Cascade

  • Chapter
  • First Online:
Genetics of Male Infertility
  • 667 Accesses

Abstract

About 10–15% of the couples suffer from infertility worldwide, with male factor accounting for half of the infertility cases. Spermatogenesis is a complex process involving the interplay of thousands of genes, of which about 1000 are testis enriched with about 200 signature genes. Such a complex spatiotemporal molecular interplay is mandatory for orchestrating the most diverse cellular changes beginning with mitosis, going through meiosis, and terminating with cellular differentiation, ultimately resulting in the formation of a highly specialized, motile, and unique cellular entity called sperm. Mouse knockout studies have been instrumental in identifying the genes important for spermatogenesis. Till now, at least 388 genes have been reported to play roles in spermatogenesis in mouse. Human genetic analysis studies provided invaluable insights in identifying candidate genes. Recently, the implementation of whole genome studies has added more candidates that need further in-depth research for dissecting their biological roles. In this chapter, we have summarized the genes important for spermatogonial stem cell renewal, meiosis, and spermiogenesis and the association of mutations in these genes with human male infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED. Mammalian spermatogenesis. In: Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED, editors. Histological and Histopathological Evaluation of the Testis. Clearwater: Cache River Press; 1990. P. 1–40.

    Google Scholar 

  2. Di Spiezio Sardo A, Di Carlo C, Minozzi S, Spinelli M, Pistotti V, Alviggi C, De Placido G, Nappi C, Bifulco G. Efficacy of hysteroscopy in improving reproductive outcomes of infertile couples: a systematic review and meta-analysis. Hum Reprod Update. 2016;22(4):479–96.

    Article  PubMed  Google Scholar 

  3. Stahl PJ, Schlegel PN. Genetic evaluation of the azoospermic or severely oligozoospermic male. Curr Opin Obstet Gynecol. 2012;24(4):221–8.

    Article  PubMed  Google Scholar 

  4. Miyamoto T, Minase G, Okabe K, Ueda H, Sengoku K. Male infertility and its genetic causes. J Obstet Gynaecol Res. 2015;41(10):1501–5.

    Article  CAS  PubMed  Google Scholar 

  5. Reijo R, Lee TY, Salo P, Alagappan R, Brown LG, Rosenberg M, Rozen S, Jaffe T, Straus D, Hovatta O, de la Chapelle A. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA–binding protein gene. Nat Genet. 1995;10(4):383.

    Article  CAS  PubMed  Google Scholar 

  6. Matzuk MM, Lamb DJ. The biology of infertility: research advances and clinical challenges. Nat Med. 2008;14(11):1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Elliott DJ, Millar MR, Oghene K, Ross A, Kiesewetter F, Pryor J, McIntyre M, Hargreave TB, Saunders PT, Vogt PH, Chandley AC. Expression of RBM in the nuclei of human germ cells is dependent on a critical region of the Y chromosome long arm. Proc Natl Acad Sci. 1997;94(8):3848–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Krausz C, Hoefsloot L, Simoni M, Tüttelmann F. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013. Andrology. 2014;2(1):5–19.

    Article  CAS  PubMed  Google Scholar 

  9. Suganthi R, Vijesh VV, Vandana N, Benazir JF. Y chromosomal microdeletion screening in the workup of male infertility and its current status in India. Int J Fertil Steril. 2014;7(4):253.

    PubMed  Google Scholar 

  10. Miyamoto T, Hasuike S, Yogev L, Maduro MR, Ishikawa M, Westphal H, Lamb DJ. Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet. 2003;362(9397):1714–9.

    Article  CAS  PubMed  Google Scholar 

  11. Yatsenko AN, Roy A, Chen R, Ma L, Murthy LJ, Yan W, Lamb DJ, Matzuk MM. Non-invasive genetic diagnosis of male infertility using spermatozoal RNA: KLHL10 mutations in oligozoospermic patients impair homodimerization. Hum Mol Genet. 2006;15(23):3411–9.

    Article  CAS  PubMed  Google Scholar 

  12. Xu X, Toselli PA, Russell LD, Seldin DC. Globozoospermia in mice lacking the casein kinase II α′ catalytic subunit. Nat Genet. 1999;23(1):118.

    Article  CAS  PubMed  Google Scholar 

  13. Kilani Z, Ismail R, Ghunaim S, Mohamed H, Hughes D, Brewis I, Barratt CL. Evaluation and treatment of familial globozoospermia in five brothers. Fertil Steril. 2004;82(5):1436–9.

    Article  PubMed  Google Scholar 

  14. Kang-Decker N, Mantchev GT, Juneja SC, McNiven MA, van Deursen JM. Lack of acrosome formation in Hrb-deficient mice. Science. 2001;294(5546):1531–3.

    Article  CAS  PubMed  Google Scholar 

  15. Yao R, Ito C, Natsume Y, Sugitani Y, Yamanaka H, Kuretake S, Yanagida K, Sato A, Toshimori K, Noda T. Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci. 2002;99(17):11211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dam AH, Koscinski I, Kremer JA, Moutou C, Jaeger AS, Oudakker AR, Tournaye H, Charlet N, Lagier-Tourenne C, van Bokhoven H, Viville S. Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am J Hum Genet. 2007;81(4):813–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karaca N, Yilmaz R, Kanten GE, Kervancioglu E, Solakoglu S, Kervancioglu ME. First successful pregnancy in a globozoospermic patient having homozygous mutation in SPATA16. Fertil Steril. 2014;102(1):103–7.

    Article  CAS  PubMed  Google Scholar 

  18. Mou L, Wang Y, Li H, Huang Y, Jiang T, Huang W, Li Z, Chen J, Xie J, Liu Y, Jiang Z. A dominant-negative mutation of HSF2 associated with idiopathic azoospermia. Hum Genet. 2013;132(2):159–65.

    Article  CAS  PubMed  Google Scholar 

  19. Gupta N, Sudhakar DV, Gangwar PK, Sankhwar SN, Gupta NJ, Chakraborty B, Thangaraj K, Gupta G, Rajender S. Mutations in the prostate specific antigen (PSA/KLK3) correlate with male infertility. Sci Rep. 2017;7(1):11225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ohta K, Yamamoto M, Lin Y, Hogg N, Akiyama H, Behringer RR, Yamazaki Y. Male differentiation of germ cells induced by embryonic age-specific Sertoli cells in mice. Biol Reprod. 2012;86(4):112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Oakberg EF. Spermatogonial stem-cell renewal in the mouse. Anat Rec. 1971;169(3):515–31.

    Article  CAS  PubMed  Google Scholar 

  22. De Rooij DG. Spermatogonial stem cell renewal in the mouse: I. Normal situation. Cell Proliferation. 1973;6(3):281–7.

    Article  Google Scholar 

  23. Elhija MA, Lunenfeld E, Schlatt S, Huleihel M. Differentiation of murine male germ cells to spermatozoa in a soft agar culture system. Asian J Androl. 2012;14(2):285.

    Article  PubMed  CAS  Google Scholar 

  24. Tagelenbosch RA, de Rooij DG. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res. 1993;290(2):193–200.

    Article  Google Scholar 

  25. Chen SR, Liu YX. Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling. Reproduction. 2015;149(4):R159–67.

    Article  CAS  PubMed  Google Scholar 

  26. Weber JE, Russell LD. A study of intercellular bridges during spermatogenesis in the rat. Am J Anat. 1987;180(1):1–24.

    Article  CAS  PubMed  Google Scholar 

  27. Lacham-Kaplan O. In vivo and in vitro differentiation of male germ cells in the mouse. Reproduction. 2004;128(2):147–52.

    Article  PubMed  Google Scholar 

  28. Meng X, Lindahl M, Hyvönen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 2000;287(5457):1489–93.

    Article  CAS  PubMed  Google Scholar 

  29. Naughton CK, Jain S, Strickland AM, Gupta A, Milbrandt J. Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod. 2006;74(2):314–21.

    Article  CAS  PubMed  Google Scholar 

  30. Lee J, Kanatsu-Shinohara M, Inoue K, Ogonuki N, Miki H, Toyokuni S, Kimura T, Nakano T, Ogura A, Shinohara T. Akt mediates self-renewal division of mouse spermatogonial stem cells. Development. 2007;134(10):1853–9.

    Article  CAS  PubMed  Google Scholar 

  31. Oatley JM, Avarbock MR, Brinster RL. Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on Src family kinase signaling. J Biol Chem. 2007;282(35):25842–51.

    Article  CAS  PubMed  Google Scholar 

  32. Braydich-Stolle L, Kostereva N, Dym M, Hofmann MC. Role of Src family kinases and N-Myc in spermatogonial stem cell proliferation. Dev Biol. 2007;304(1):34–45.

    Article  CAS  PubMed  Google Scholar 

  33. He Z, Jiang J, Kokkinaki M, Golestaneh N, Hofmann MC, Dym M. Gdnf upregulates c-Fos transcription via the Ras/Erk1/2 pathway to promote mouse spermatogonial stem cell proliferation. Stem Cells. 2008;26(1):266–78.

    Article  CAS  PubMed  Google Scholar 

  34. Ishii K, Kanatsu-Shinohara M, Toyokuni S, Shinohara T. FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1 activation. Development. 2012;139(10):1734–43.

    Article  CAS  PubMed  Google Scholar 

  35. Oatley JM, Avarbock MR, Telaranta AI, Fearon DT, Brinster RL. Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci. 2006;103(25):9524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ballow D, Meistrich ML, Matzuk M, Rajkovic A. Sohlh1 is essential for spermatogonial differentiation. Dev Biol. 2006;294(1):161–7.

    Article  CAS  PubMed  Google Scholar 

  37. Wu X, Goodyear SM, Tobias JW, Avarbock MR, Brinster RL. Spermatogonial stem cell self-renewal requires ETV5-mediated downstream activation of Brachyury in mice. Biol Reprod. 2011;85(6):1114–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oatley MJ, Kaucher AV, Racicot KE, Oatley JM. Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice. Biol Reprod. 2011;85(2):347–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sada A, Suzuki A, Suzuki H, Saga Y. The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells. Science. 2009;325(5946):1394–8.

    Article  CAS  PubMed  Google Scholar 

  40. Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, de Rooij DG, Braun RE. Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet. 2004;36(6):647.

    Article  CAS  PubMed  Google Scholar 

  41. Filipponi D, Hobbs RM, Ottolenghi S, Rossi P, Jannini EA, Pandolfi PP, Dolci S. Repression of kit expression by Plzf in germ cells. Mol Cell Biol. 2007;27(19):6770–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hobbs RM, Fagoonee S, Papa A, Webster K, Altruda F, Nishinakamura R, Chai L, Pandolfi PP. Functional antagonism between Sall4 and Plzf defines germline progenitors. Cell Stem Cell. 2012;10(3):284–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lovasco LA, Gustafson EA, Seymour KA, Rooij DG, Freiman RN. TAF4b is required for mouse spermatogonial stem cell development. Stem Cells. 2015;33(4):1267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goertz MJ, Wu Z, Gallardo TD, Hamra FK, Castrillon DH. Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis. J Clin Invest. 2011;121(9):3456–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kanatsu-Shinohara M, Tanaka T, Ogonuki N, Ogura A, Morimoto H, Cheng PF, Eisenman RN, Trumpp A, Shinohara T. Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal. Genes Dev. 2016;30(23):2637–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van Pelt AM, de Rooij DG. Synchronization of the seminiferous epithelium after vitamin a replacement in vitamin A-deficient mice. Biol Reprod. 1990;43(3):363–7.

    Article  PubMed  Google Scholar 

  47. van Pelt AM, de Rooij DG. Retinoic acid is able to reinitiate spermatogenesis in vitamin A-deficient rats and high replicate doses support the full development of spermatogenic cells. Endocrinology. 1991;128(2):697–704.

    Article  PubMed  Google Scholar 

  48. Gaemers IC, Van Pelt AM, Van der Saag PT, De Rooij DG. All-trans-4-oxo-retinoic acid: a potent inducer of in vivo proliferation of growth-arrested A spermatogonia in the vitamin A-deficient mouse testis. Endocrinology. 1996;137(2):479–85.

    Article  CAS  PubMed  Google Scholar 

  49. Gaemers IC, Sonneveld E, van Pelt AM, Schrans BH, Themmen AP, van der Saag PT, de Rooij DG. The effect of 9-cis-retinoic acid on proliferation and differentiation of a spermatogonia and retinoid receptor gene expression in the vitamin A-deficient mouse testis. Endocrinology. 1998;139(10):4269–76.

    Article  CAS  PubMed  Google Scholar 

  50. Tong MH, Yang QE, Davis JC, Griswold MD. Retinol dehydrogenase 10 is indispensible for spermatogenesis in juvenile males. Proc Natl Acad Sci. 2013;110(2):543–8.

    Article  CAS  PubMed  Google Scholar 

  51. Raverdeau M, Gely-Pernot A, Féret B, Dennefeld C, Benoit G, Davidson I, Chambon P, Mark M, Ghyselinck NB. Retinoic acid induces Sertoli cell paracrine signals for spermatogonia differentiation but cell autonomously drives spermatocyte meiosis. Proc Natl Acad Sci. 2012;109(41):16582–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Raverot G, Weiss J, Park SY, Hurley L, Jameson JL. Sox3 expression in undifferentiated spermatogonia is required for the progression of spermatogenesis. Dev Biol. 2005;283(1):215–25.

    Article  CAS  PubMed  Google Scholar 

  53. Toyoda S, Miyazaki T, Miyazaki S, Yoshimura T, Yamamoto M, Tashiro F, Yamato E, Miyazaki JI. Sohlh2 affects differentiation of KIT positive oocytes and spermatogonia. Dev Biol. 2009;325(1):238–48.

    Article  CAS  PubMed  Google Scholar 

  54. Laronda MM, Jameson JL. Sox3 functions in a cell-autonomous manner to regulate spermatogonial differentiation in mice. Endocrinology. 2011;152(4):1606–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Suzuki H, Ahn HW, Chu T, Bowden W, Gassei K, Orwig K, Rajkovic A. SOHLH1 and SOHLH2 coordinate spermatogonial differentiation. Dev Biol. 2012;361(2):301–12.

    Article  CAS  PubMed  Google Scholar 

  56. Hao J, Yamamoto M, Richardson TE, Chapman KM, Denard BS, Hammer RE, Zhao GQ, Hamra FK. Sohlh2 knockout mice are male-sterile because of degeneration of differentiating type A spermatogonia. Stem Cells. 2008;26(6):1587–97.

    Article  CAS  PubMed  Google Scholar 

  57. Endo T, Romer KA, Anderson EL, Baltus AE, de Rooij DG, Page DC. Periodic retinoic acid–STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis. Proc Natl Acad Sci. 2015;112(18):E2347–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schrans-Stassen BH, van de Kant HJ, de Rooij DG, van Pelt AM. Differential expression of c-kit in mouse undifferentiated and differentiating type A spermatogonia. Endocrinology. 1999;140(12):5894–900.

    Article  CAS  PubMed  Google Scholar 

  59. Beumer TL, Roepers-Gajadien HL, Gademan IS, Kal HB, de Rooij DG. Involvement of the D-type cyclins in germ cell proliferation and differentiation in the mouse. Biol Reprod. 2000;63(6):1893–8.

    Article  CAS  PubMed  Google Scholar 

  60. Gely-Pernot A, Raverdeau M, Teletin M, Vernet N, Féret B, Klopfenstein M, Dennefeld C, Davidson I, Benoit G, Mark M, Ghyselinck NB. Retinoic acid receptors control spermatogonia cell-fate and induce expression of the SALL4A transcription factor. PLoS Genet. 2015;11(10):e1005501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Koshimizu U, Sawada K, Tajima Y, Watanabe D, Nishimune Y. White-spotting mutations affect the regenerative differentiation of testicular germ cells: demonstration by experimental cryptorchidism and its surgical reversal. Biol Reprod. 1991;45(4):642–8.

    Article  CAS  PubMed  Google Scholar 

  62. Sawada K, Sakamaki K, Nishimune Y. Effect of the W mutation, for white belly spot, on testicular germ cell differentiation in mice. Reproduction. 1991;93(2):287–94.

    Article  CAS  Google Scholar 

  63. Anderson EL, Baltus AE, Roepers-Gajadien HL, Hassold TJ, de Rooij DG, van Pelt AM, Page DC. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci. 2008;105(39):14976–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Page SL, Hawley RS. The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol. 2004;20:525–58.

    Article  CAS  PubMed  Google Scholar 

  65. de Vries FA, de Boer E, van den Bosch M, Baarends WM, Ooms M, Yuan L, Liu JG, van Zeeland AA, Heyting C, Pastink A. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev. 2005;19(11):1376–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kolas NK, Yuan L, Hoog C, Heng HH, Marcon E, Moens PB. Male mouse meiotic chromosome cores deficient in structural proteins SYCP3 and SYCP2 align by homology but fail to synapse and have possible impaired specificity of chromatin loop attachment. Cytogenet Genome Res. 2004;105(2–4):182–8.

    Article  CAS  PubMed  Google Scholar 

  67. Yang F, De La Fuente R, Leu NA, Baumann C, McLaughlin KJ, Wang PJ. Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis. J Cell Biol. 2006;173(4):497–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wojtasz L, Daniel K, Roig I, Bolcun-Filas E, Xu H, Boonsanay V, Eckmann CR, Cooke HJ, Jasin M, Keeney S, McKay MJ. Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genet. 2009;5(10):e1000702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Fukuda T, Daniel K, Wojtasz L, Toth A, Höög C. A novel mammalian HORMA domain-containing protein, HORMAD1, preferentially associates with unsynapsed meiotic chromosomes. Exp Cell Res. 2010;316(2):158–71.

    Article  CAS  PubMed  Google Scholar 

  70. Shin YH, Choi Y, Erdin SU, Yatsenko SA, Kloc M, Yang F, Wang PJ, Meistrich ML, Rajkovic A. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis. PLoS genetics. 2010;6(11):e1001190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Daniel K, Lange J, Hached K, Fu J, Anastassiadis K, Roig I, Cooke HJ, Stewart AF, Wassmann K, Jasin M, Keeney S. Meiotic homologue alignment and its quality surveillance are controlled by mouse HORMAD1. Nat Cell Biol. 2011;13(5):599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wojtasz L, Cloutier JM, Baumann M, Daniel K, Varga J, Fu J, Anastassiadis K, Stewart AF, Reményi A, Turner JM, Tóth A. Meiotic DNA double-strand breaks and chromosome asynapsis in mice are monitored by distinct HORMAD2-independent and-dependent mechanisms. Genes Dev. 2012;26(9):958–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Royo H, Polikiewicz G, Mahadevaiah SK, Prosser H, Mitchell M, Bradley A, de Rooij DG, Burgoyne PS, Turner JM. Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr Biol. 2010;20(23):2117–23.

    Article  CAS  PubMed  Google Scholar 

  74. Turner JM. Meiotic silencing in mammals. Annu Rev Genet. 2015;49:395–412.

    Article  CAS  PubMed  Google Scholar 

  75. Burgoyne PS, Mahadevaiah SK, Turner JM. The consequences of asynapsis for mammalian meiosis. Nat Rev Genet. 2009;10(3):207.

    Article  CAS  PubMed  Google Scholar 

  76. Jan SZ, Hamer G, Repping S, de Rooij DG, van Pelt AM, Vormer TL. Molecular control of rodent spermatogenesis. Biochim Biophys Acta. 2012;1822(12):1838–50.

    Article  CAS  PubMed  Google Scholar 

  77. ElInati E, Russell HR, Ojarikre OA, Sangrithi M, Hirota T, De Rooij DG, McKinnon PJ, Turner JM. DNA damage response protein TOPBP1 regulates X chromosome silencing in the mammalian germ line. Proc Natl Acad Sci. 2017;114(47):12536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Marcon E, Moens PB. The evolution of meiosis: recruitment and modification of somatic DNA-repair proteins. BioEssays. 2005;27(8):795–808.

    Article  CAS  PubMed  Google Scholar 

  79. Sanderson ML, Hassold TJ, Carrell DT. Proteins involved in meiotic recombination: a role in male infertility? Syst Biol Reprod Med. 2008;54(2):57–74.

    Article  CAS  PubMed  Google Scholar 

  80. Handel MA, Schimenti JC. Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat Rev Genet. 2010;11(2):124.

    Article  CAS  PubMed  Google Scholar 

  81. MacQueen AJ, Hochwagen A. Checkpoint mechanisms: the puppet masters of meiotic prophase. Trends Cell Biol. 2011;21(7):393–400.

    Article  CAS  PubMed  Google Scholar 

  82. Kierszenbaum AL, Rivkin E, Tres LL, Duan C, Goldberg E, Szot M, Grigoriev V, Mahadevaiah SK, Ojarikre OA, Touré A, von Glasenapp E. Specific arrests of spermatogenesis in genetically modified and mutant mice. Cytogenet Genome Res. 2003;103(3–4):267–76.

    Google Scholar 

  83. Barchi M, Mahadevaiah S, Di Giacomo M, Baudat F, de Rooij DG, Burgoyne PS, Jasin M, Keeney S. Surveillance of different recombination defects in mouse spermatocytes yields distinct responses despite elimination at an identical developmental stage. Mol Cell Biol. 2005;25(16):7203–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Barlow C, Liyanage M, Moens PB, Tarsounas M, Nagashima K, Brown K, Rottinghaus S, Jackson SP, Tagle D, Ried T, Wynshaw-Boris A. Atm deficiency results in severe meiotic disruption as early as leptonema of prophase I. Development. 1998;125(20):4007–17.

    CAS  PubMed  Google Scholar 

  85. Hamer G, Kal HB, Westphal CH, Ashley T, de Rooij DG. Ataxia telangiectasia mutated expression and activation in the testis. Biol Reprod. 2004;70(4):1206–12.

    Article  CAS  PubMed  Google Scholar 

  86. Pittman DL, Cobb J, Schimenti KJ, Wilson LA, Cooper DM, Brignull E, Handel MA, Schimenti JC. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol Cell. 1998;1(5):697–705.

    Article  CAS  PubMed  Google Scholar 

  87. Baudat F, Manova K, Yuen JP, Jasin M, Keeney S. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell. 2000;6(5):989–98.

    Article  CAS  PubMed  Google Scholar 

  88. de Vries SS, Baart EB, Dekker M, Siezen A, de Rooij DG, de Boer P, te Riele H. Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev. 1999;13(5):523–31.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Revenkova E, Eijpe M, Heyting C, Hodges CA, Hunt PA, Liebe B, Scherthan H, Jessberger R. Cohesin SMC1β is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat Cell Biol. 2004;6(6):555.

    Article  CAS  PubMed  Google Scholar 

  90. Hamer G, Novak I, Kouznetsova A, Höög C. Disruption of pairing and synapsis of chromosomes causes stage-specific apoptosis of male meiotic cells. Theriogenology. 2008;69(3):333–9.

    Article  CAS  PubMed  Google Scholar 

  91. Fawcett DW. The mammalian spermatozoon. Dev Biol. 1975;44(2):394–436.

    Article  CAS  PubMed  Google Scholar 

  92. Escalier D. Knockout mouse models of sperm flagellum anomalies. Hum Reprod Update. 2006;12(4):449–61.

    Article  CAS  PubMed  Google Scholar 

  93. Kazarian E, Son H, Sapao P, Li W, Zhang Z, Strauss J III, Teves M. SPAG17 is required for male germ cell differentiation and fertility. Int J Mol Sci. 2018;19(4):1252.

    Article  PubMed Central  CAS  Google Scholar 

  94. Feng CW, Spiller C, Merriner DJ, O’Bryan MK, Bowles J, Koopman P. SOX30 is required for male fertility in mice. Sci Rep. 2017;7(1):17619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Johnson DR, Hunt DM. Hop-sterile, a mutant gene affecting sperm tail development in the mouse. Development. 1971;25(2):223–36.

    CAS  Google Scholar 

  96. Sapiro R, Kostetskii I, Olds-Clarke P, Gerton GL, Radice GL, Strauss III JF. Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6. Mol Cell Biol. 2002;22(17):6298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tanaka H, Iguchi N, Toyama Y, Kitamura K, Takahashi T, Kaseda K, Maekawa M, Nishimune Y. Mice deficient in the axonemal protein Tektin-t exhibit male infertility and immotile-cilium syndrome due to impaired inner arm dynein function. Mol Cell Biol. 2004;24(18):7958–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kierszenbaum AL, Tres LL. The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Arch Histol Cytol. 2004;67(4):271–84.

    Article  CAS  PubMed  Google Scholar 

  99. Mochida K, Tres LL, Kierszenbaum AL. Structural and biochemical features of fractionated spermatid manchettes and sperm axonemes of the azh/azh mutant mouse. Mol Reprod Dev. 1999;52(4):434–44.

    Article  CAS  PubMed  Google Scholar 

  100. Kierszenbaum AL, Rivkin E, Tres LL, Yoder BK, Haycraft CJ, Bornens M, Rios RM. GMAP210 and IFT88 are present in the spermatid golgi apparatus and participate in the development of the acrosome–acroplaxome complex, head–tail coupling apparatus and tail. Dev Dyn. 2011;240(3):723–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu Y, DeBoer K, de Kretser DM, O’Donnell L, O’Connor AE, Merriner DJ, Okuda H, Whittle B, Jans DA, Efthymiadis A, McLachlan RI. LRGUK-1 is required for basal body and manchette function during spermatogenesis and male fertility. PLoS Genet. 2015;11(3):e1005090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Okuda H, DeBoer K, O’Connor AE, Merriner DJ, Jamsai D, O’Bryan MK. LRGUK1 is part of a multiprotein complex required for manchette function and male fertility. FASEB J. 2016;31(3):1141–52.

    Article  PubMed  Google Scholar 

  103. Zheng H, Stratton CJ, Morozumi K, Jin J, Yanagimachi R, Yan W. Lack of Spem1 causes aberrant cytoplasm removal, sperm deformation, and male infertility. Proc Natl Acad Sci. 2007;104(16):6852–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Geyer CB, Inselman AL, Sunman JA, Bornstein S, Handel MA, Eddy EM. A missense mutation in the Capza3 gene and disruption of F-actin organization in spermatids of repro32 infertile male mice. Dev Biol. 2009;330(1):142–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Meistrich ML, Mohapatra B, Shirley CR, Zhao M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma. 2003;111(8):483–8.

    Article  PubMed  Google Scholar 

  106. Spiridonov NA, Wong L, Zerfas PM, Starost MF, Pack SD, Paweletz CP, Johnson GR. Identification and characterization of SSTK, a serine/threonine protein kinase essential for male fertility. Mol Cell Biol. 2005;25(10):4250–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nair M, Nagamori I, Sun P, Mishra DP, Rhéaume C, Li B, Sassone-Corsi P, Dai X. Nuclear regulator Pygo2 controls spermiogenesis and histone H3 acetylation. Dev Biol. 2008;320(2):446–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Meistrich ML, Trostle-Weige PK, Lin R, Allis CD, Bhatnagar YM. Highly acetylated H4 is associated with histone displacement in rat spermatids. Mol Reprod Dev. 1992;31(3):170–81.

    Article  CAS  PubMed  Google Scholar 

  109. Gaucher J, Reynoird N, Montellier E, Boussouar F, Rousseaux S, Khochbin S. From meiosis to postmeiotic events: the secrets of histone disappearance. FEBS J. 2010;277(3):599–604.

    Article  CAS  PubMed  Google Scholar 

  110. Nantel F, Sassone-Corsi P. CREM: a transcriptional master switch during the spermatogenesis differentiation program. Front Biosci. 1996;1:d266–9.

    Article  CAS  PubMed  Google Scholar 

  111. Zhang D, Penttila TL, Morris PL, Teichmann M, Roeder RG. Spermiogenesis deficiency in mice lacking the Trf2 gene. Science. 2001;292(5519):1153–5.

    Article  CAS  PubMed  Google Scholar 

  112. Wu JY, Ribar TJ, Cummings DE, Burton KA, McKnight GS, Means AR. Spermiogenesis and exchange of basic nuclear proteins are impaired in male germ cells lacking Camk4. Nat Genet. 2000;25(4):448.

    Article  CAS  PubMed  Google Scholar 

  113. Li W, Wu J, Kim SY, Zhao M, Hearn SA, Zhang MQ, Meistrich ML, Mills AA. Chd5 orchestrates chromatin remodelling during sperm development. Nat Commun. 2014;5:3812.

    Article  CAS  PubMed  Google Scholar 

  114. Moretti C, Serrentino ME, Ialy-Radio C, Delessard M, Soboleva TA, Tores F, Leduc M, Nitschké P, Drevet JR, Tremethick DJ, Vaiman D. SLY regulates genes involved in chromatin remodeling and interacts with TBL1XR1 during sperm differentiation. Cell Death Differ. 2017;24(6):1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Coutton C, Vargas AS, Amiri-Yekta A, Kherraf ZE, Mustapha SF, Tanno P, Wambergue-Legrand C, Karaouzène T, Martinez G, Crouzy S, Daneshipour A. Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nat Commun. 2018;9(1):686.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Arafat M, Har-Vardi I, Harlev A, Levitas E, Zeadna A, Abofoul-Azab M, Dyomin V, Sheffield VC, Lunenfeld E, Huleihel M, Parvari R. Mutation in TDRD9 causes non-obstructive azoospermia in infertile men. J Med Genet. 2017;54(9):633–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Council of Scientific Research and Industrial Research (CSIR), Govt. of India, for financial help and CSIR-Central Drug Research Institute (CDRI) for providing working environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajender Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, M., Singh, R. (2020). Molecular Regulation of Sperm Production Cascade. In: Arafa, M., Elbardisi, H., Majzoub, A., Agarwal, A. (eds) Genetics of Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-37972-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37972-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37971-1

  • Online ISBN: 978-3-030-37972-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics