Skip to main content

Kartagener and Immotile Cilia Syndrome

  • Chapter
  • First Online:
Genetics of Male Infertility

Abstract

Among the many causes of male infertility, Kartagener syndrome (KS) – also known as immotile cilia syndrome or primary ciliary dyskinesia (PCD) – is among its genetic causes and deserves special attention, as it is accompanied by many complications that may severely affect the patient’s quality of life. PCD was first reported by Kartagener in 1933, when they described four patients presenting with the triad of chronic sinusitis, bronchiectasis, and situs inversus, thus establishing KS. Forty years later, Afzelius noted that these patients had “immotile” cilia and defective ciliary ultrastructure, specifically noticing a functional change in dynein arms, promoting decreased mucociliary clearance due to a lack of ciliary movement, which is known as “immotile cilia syndrome.” Concerning fertility, ciliary dysfunction may affect both male and female fertility. As the sperm flagellum is a type of cilia, an abnormal ciliary structure may lead to the reduction or inability of the flagellum to adequately work; as a consequence, male infertility may occur. On the other hand, ciliary dysfunction may also occur in the fallopian tubes of affected women, leading to an increased risk of ectopic pregnancy or infertility. ICSI represents a successful milestone for coping with infertility in men with KS, in which spermatozoa are either completely evident or initially immobile in the ejaculate. The use of testicular spermatozoa in combination with ICSI may serve as an alternative treatment and may be associated with even better results when compared to ejaculate sperm. Genetic counseling is strongly recommended for these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Practice Committee of the American Society for Reproductive Medicine. Diagnostic evaluation of the infertile male: a committee opinion. Fertil Steril. 2015;103:e18–25.

    Google Scholar 

  2. Afzelius BA. The immotile-cilia syndrome: a microtubule-associated defect. CRC Crit Rev Biochem. 1985;19:63–87.

    Article  CAS  PubMed  Google Scholar 

  3. Leigh MW, O’Callaghan C, Knowles MR. The challenges of diagnos- ing primary ciliary dyskinesia. Proc Am Thorac Soc. 2011;8(5):434–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Haver K. The time is right for an international primary ciliary dyskinesia disease registry. Eur Respir J. 2017;49(1):1602143.

    Article  PubMed  Google Scholar 

  5. Shoemark A, Frost E, Dixon M, et al. Accuracy of immunofluorescence in the diagnosis of primary ciliary dyskinesia. Am J Respir Crit Care Med. 2017;196(1):94–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frija-Masson J, Bassinet L, Honoré I, et al. Clinical characteristics, functional respiratory decline and follow-up in adult patients with primary ciliary dyskinesia. Thorax. 2017;72(2):154–60.

    Article  PubMed  Google Scholar 

  7. Davis SD, Ferkol TW, Rosenfeld M, et al. Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. Am J Respir Crit Care Med. 2015;191(3):316–24.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chang W, Kung W, Chiu W. Kartagener syndrome. QJM: Int J Med. 2017;110(8):523.

    Article  Google Scholar 

  9. Leigh MW, Pittman JE, Carson JL, et al. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet Med. 2009;11:473–87.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sha YA, Ding L, Li P. Management of primary ciliary dyskinesia/Katagener’s syndrome in infertile male patients and current progress in defining the underlying genetic mechanism. Asian J Androl. 2014;16:101–6.

    Article  PubMed  Google Scholar 

  11. Kartagener M. Zur Pathogenese der Bronchiektasien I. Bronchiektasien bei Situs viscerum Inversus Beitr Klein Tuberk. 1933;83:489–501.

    Article  Google Scholar 

  12. Afzelius BA. A human syndrome caused by immotile cilia. Science. 1976;193(4250):317–9.

    Article  CAS  PubMed  Google Scholar 

  13. Eliasson R, Mossberg B, Camner P, Afzelius BA. The immotile-cilia syndrome. A congenital ciliary abnormality as an etiologic factor in chronic airway infections and male sterility. N Engl J Med. 1977;297(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  14. Sturgess JM, Chao J, Wong J, Aspin N, Turner JA. Cilia with defective radial spokes: a cause of human respiratory disease. N Engl J Med. 1979;300(2):53–6.

    Article  CAS  PubMed  Google Scholar 

  15. Wakefield S, Waite D. Abnormal cilia in Polynesians with bronchi- ectasis. Am Rev Respir Dis. 1980;121(6):1003–10.

    CAS  PubMed  Google Scholar 

  16. Herzon FS, Murphy S. Normal ciliary ultrastructure in children with Kartagener’s syndrome. Ann Otol Rhinol Laryngol. 1980;89(1, Pt 1):81–3.

    Article  CAS  PubMed  Google Scholar 

  17. Mitchison HM, Valente EM. Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol. 2017;241:294–309.

    Article  PubMed  Google Scholar 

  18. Satir P, Christensen ST. Structure and function of mammalian cilia. Histochem Cell Biol. 2008;129:687–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Milla CE. The evolving spectrum of ciliopathies and respiratory disease. Curr Opin Pediatr. 2016;28:339–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ibanez-Tallon I, Heintz N, Omran H. To beat or not to beat: roles of cilia in development and disease. Hum Mol Genet. 2003;12:27–35.

    Article  CAS  Google Scholar 

  21. Stannard W, Rutman A, Wallis C, O’Callaghan C. Central microtubular agenesis causing primary ciliary dyskinesia. Am J Respir Crit Care Med. 2004;169:634–7.

    Article  PubMed  Google Scholar 

  22. van’s Gravesande KS, Omran H. Primary ciliary dyskinesia: clinical presentation, diagnosis and genetics. Ann Med. 2005;37:439–49.

    Article  CAS  Google Scholar 

  23. Afzelius BA, Mossberg B, Bergström SE. Immotile cilia syndrome (pri- mary ciliary dyskinesis), including Kartagener syndrome. In: Scriver CS, Beaudet AL, Valle D, Sly WS, Childs B, Kinzler KW, Vogelstein B, editors. The metabolic and molecular bases of inherited disease, vol. 3. 8th ed. New York: McGraw-Hill; 2001. p. 4817–27.

    Google Scholar 

  24. El Zein L, Omran H, Bouvagnet P. Lateralization defects and ciliary dyskinesia: lessons from algae. Trends Genet. 2003;19:162–7.

    Article  PubMed  Google Scholar 

  25. Omran H, Haffner K, Volkel A, et al. Homozygosity mapping of a gene locus for primary ciliary dyskinesia on chromosome 5p and identification of the heavy dynein chain DNAH5 as a candidate gene. Am J Respir Cell Mol Biol. 2000;23:696–702.

    Article  CAS  PubMed  Google Scholar 

  26. Guichard C, Harricane MC, Lafitte JJ, et al. Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). Am J Hum Genet. 2001;68:1030–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hornef N, Olbrich H, Horvath J, Zariwala MA, Fliegauf M, Loges NT, Wildhaber J, Noone PG, Kennedy M, Antonarakis SE, et al. DNAH5 mutations are a com- mon cause of primary ciliary dyskinesia with outer dynein arm defects. Am J Respir Crit Care Med. 2006;174:120–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hjeij R, Lindstrand A, Francis R, Zariwala MA, Liu X, Li Y, Damerla R, Dougherty GW, Abouhamed M, Olbrich H, et al. ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry. Am J Hum Genet. 2013;93:357–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Onoufriadis A, Shoemark A, Munye MM, James CT, Schmidts M, Patel M, Rosser EM, Bacchelli C, Beales PL, Scambler PJ, et al.; UK10K. Combined exome and whole-genome sequencing identifies mutations in ARMC4 as a cause of primary ciliary dyskinesia with defects in the outer dynein arm. J Med Genet. 2014;51:61–67.

    Google Scholar 

  30. Panizzi JR, Becker-Heck A, Castleman VH, Al-Mutairi DA, Liu Y, Loges NT, Pathak N, Austin-Tse C, Sheridan E, Schmidts M, et al. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat Genet. 2012;44:714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. King SM, Patel-King RS. The oligomeric outer dynein arm assembly factor CCDC103 is tightly integrated within the ciliary axoneme and exhibits periodic binding to microtubules. J Biol Chem. 2015;290:7388–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hjeij R, Onoufriadis A, Watson CM, Slagle CE, Klena NT, Dougherty GW, Kurkowiak M, Loges NT, Diggle CP, Morante NF, et al.; UK10K Consortium. CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex forma- tion. Am J Hum Genet. 2014;95:257–274.

    Google Scholar 

  33. Onoufriadis A, Paff T, Antony D, Shoemark A, Micha D, Kuyt B, Schmidts M, Petridi S, Dankert-Roelse JE, Haarman EG, et al.; UK10K. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am J Hum Genet. 2013:92:88–98.

    Article  CAS  PubMed  Google Scholar 

  34. Knowles MR, Leigh MW, Ostrowski LE, Huang L, Carson JL, Hazucha MJ, Yin W, Berg JS, Davis SD, Dell SD, et al.; Genetic Disorders of Mucociliary Clearance Consortium. Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia. Am J Hum Genet. 2013;92:99–106.

    Article  CAS  PubMed  Google Scholar 

  35. Horani A, Ferkol TW, Dutcher SK, Brody SL. Genetics and biology of primary ciliary dyskinesia. Paediatr Respir Rev. 2016;18:18–24.

    PubMed  Google Scholar 

  36. Desai PB, Dean AB, Mitchell DR. Cytoplasmic preassembly and trafficking of axonemal dyneins. In: King S, editor. Dyneins. 2nd ed. London: Academic Press; 2018. p. 140–61.

    Chapter  Google Scholar 

  37. Dean AB, Mitchell DR. Late steps in cyto- plasmic maturation of assembly-competent axonemal outer arm dynein in Chlamydomonas require interaction of ODA5 and ODA10 in a complex. Mol Biol Cell. 2015;26:3596–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Desai PB, Freshour JR, Mitchell DR. Chlamydomonas axonemal dynein assembly locus ODA8 encodes a conserved flagellar protein needed for cytoplasmic maturation of outer dynein arm complexes. Cytoskeleton. 2015;72:16–28.

    Article  CAS  PubMed  Google Scholar 

  39. Berdon WE, Willi U. Situs inversus, bronchiectasis, and sinusitis and its relation to immotile cilia: history of the diseases and their discoverers – Manes Kartagener and Bjorn Afzelius. Pediatr Radiol. 2004;34:38–42.

    Article  PubMed  Google Scholar 

  40. Lucas JS, Chetcuti P, Copeland F, Hogg C, Kenny T, Moya E, O’Callaghan C, Walker WT. Over- coming challenges in the management of primary ciliary dyskinesia: the UK model. Paediatr Respir Rev. 2014;15:142–5.

    PubMed  Google Scholar 

  41. Hosie PH, Fitzgerald DA, Jaffe A, Birman CS, Rutland J, Morgan LC. Presentation of primary ciliary dyskinesia in children: 30 years’ experience. J Paediatr Child Health. 2015;51:722–6.

    Article  PubMed  Google Scholar 

  42. Noone PG, Leigh MW, Sannuti A, Minnix SL, Carson JL, Hazucha M, Zariwala MA, Knowles MR. Primary ciliary dyskinesia: diagnostic and phenotypic fea- tures. Am J Respir Crit Care Med. 2004;169:459–67.

    Article  PubMed  Google Scholar 

  43. Samuel I. Kartagener’s syndrome with normal spermatozoa [letter]. J Am Med Assoc. 1987;258:1329–30.

    Article  CAS  Google Scholar 

  44. Conraads VMA, Galdermans DI, Kockx MM, Jacob WA, Van Schaar-denburg C, Collen D. Ultrastructurally normal and motile spermatozoa in a fertile man with Kartagener’s syndrome. Chest. 1992;102:1616–8.

    Article  CAS  PubMed  Google Scholar 

  45. Corbelli R, Bringolf-Isler B, Amacher A, et al. Nasal nitric oxide measurements to screen children for primary ciliary dyskinesia. Chest. 2004;126:1054–9.

    Article  CAS  PubMed  Google Scholar 

  46. Narang I, Ersu R, Wilson NM, Bush A. Nitric oxide in chronic airway inflammation in children: diagnostic use and pathophysiological significance. Thorax. 2002;57:586–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Matsumoto Y, Goto S, Hashimoto H, Hokeguchi S, Shiotani M, Okada H. A healthy birth after intracytoplasmic sperm injection using ejaculated spermatozoa from a patient with Kartagener’s syndrome. Fertil Steril. 2010;2074(93):e17–9.

    Google Scholar 

  48. Shibahara H, Hamada Y, Hasegawa A, Wakimoto E, Toji H, Shigeta M, et al. Relationship between the sperm motility index assessed by the sperm quality analyzer and the outcome of intracytoplasmic sperm injection. J Assist Reprod Genet. 1999;16:540–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ved S, Montag M, Schmutzler A, Prietl G, Haidl G, Van der Ven H. Pregnancy following intracytoplasmic sperm injection of immotile spermatozoa selected by the hypo-osmotic swelling-test: a case report. Andrologia. 1997;29:241–2.

    Article  CAS  PubMed  Google Scholar 

  50. Sallam H, Farrag A, Agameya A, Ezzeldin F, Eid A, Sallam A. The use of a modified hypo-osmotic swelling test for the selection of viable ejaculated and testicular immotile spermatozoa in ICSI. Hum Reprod. 2001;16:272–6.

    Article  CAS  PubMed  Google Scholar 

  51. Cayan S, Conaghan J, Schriock ED, Ryan IP, Black LD. Birth after intracytoplasmic sperm injec- tion with use of testicular sperm from men with Kar- tagener/immotile cilia syndrome. Fertil Steril. 2001;76:612–4.

    Article  CAS  PubMed  Google Scholar 

  52. Kaushal M, Baxi A. Birth after intracytoplasmic sperm injection with use of testicular sperm from men with Kartagener or immotile cilia syndrome. Fertil Steril. 2007;88:497–e9–11.

    Article  PubMed  Google Scholar 

  53. Kay VJ, Irvine DS. Successful in-vitro fertilization pregnancy with spermatozoa from a patient with Kartagener’s syndrome. Hum Reprod. 2000;15:135–8.

    Article  CAS  PubMed  Google Scholar 

  54. Von Zumbusch A, Fiedler K, Mayerhofer A, Jessberger B, Ring J, Vogt HJ. Birth of healthy children after intracytoplasmic sperm injection in two couples with male Kartagener’s syndrome. Fertil Steril. 1998;70:643–6.

    Article  Google Scholar 

  55. Westlander G, Barry M, Petrucco O, Norman R. Different fertilization rates between immotile tes- ticular spermatozoa and immotile ejaculated sper- matozoa for ICSI in men with Kartagener’s syndrome: case reports. Hum Reprod. 2003;18:1286–8.

    Article  CAS  PubMed  Google Scholar 

  56. Abu-Musa A, Hannoun A, Khabbaz A, Devroey P. Fail- ure of fertilization after intracytoplasmic sperm injection in a patient with Kartagener’s syndrome and totally immotile spermatozoa. Hum Reprod. 1999;14:2517–8. 10.

    Article  CAS  PubMed  Google Scholar 

  57. Nijs M, Vanderzwalmen P, Vandamme B, Segal-Bertin G, Lejeune B, Segal L, et al. Fertilizing ability of immotile spermatozoa after intracytoplasmic sperm injection. Hum Reprod. 1996;11:2180–5.

    Article  CAS  PubMed  Google Scholar 

  58. Peeraer K, Nijs M, Raick D, Ombelet W. Pregnancy after ICSI with ejaculated immotile spermatozoa from a patient with immotile cilia syndrome: a case report and review of the literature. Reprod Biomed Online. 2004;9:659–63.

    Article  PubMed  Google Scholar 

  59. Liu J, Nagy Z, Joris H, Tournaye H, Smitz J, Camus M, et al. Analysis of 76 fertilization failure cycles out of 2732 intracytoplasmic sperm injection cycles. Hum Reprod. 1995;10:2630–6.

    Article  CAS  PubMed  Google Scholar 

  60. Ron-El R, Strassburger D, Friedler S, Komarovsky D, Bern O, Raziel A. Repetitive ejaculation before intracytoplasmic sperm injection in patients with absolute immotile spermatozoa. Hum Reprod. 1998;13:630–3.

    Article  CAS  PubMed  Google Scholar 

  61. Bedford J. Epididymal physiology: its implications for epididymal microsurgery. In: Schoysman R, editor. Microsurgery of male infertility. Palermo, Italy: Fondazione per gli studi sulla riproduzione umana; 1994. p. 71–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutra, I.F., Roque, M. (2020). Kartagener and Immotile Cilia Syndrome. In: Arafa, M., Elbardisi, H., Majzoub, A., Agarwal, A. (eds) Genetics of Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-37972-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37972-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37971-1

  • Online ISBN: 978-3-030-37972-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics