Skip to main content

The Sperm Epigenome and Potential Implications for the Developing Embryo

  • Chapter
  • First Online:
Genetics of Male Infertility

Abstract

The sperm epigenome is largely set in spermatogonia, with subsequent refinements made throughout spermatogenesis. The resulting sperm epigenome contributes to a uniquely bivalent “poised” epigenome, which has been shown in animal and human studies to suggest a role in early gene expression in the early embryo. Additionally, the sperm epigenome delivers a unique set of small RNA molecules, including miRNAs and tRNA fragments believed to be involved in embryogenesis and inheritance of environmentally modified traits. The clinical ramifications of the sperm epigenome are profound in regard to potential causes of infertility and health of the offspring. Future studies are aimed at better understanding the mechanisms of epigenetically derived effects on the embryo, especially considering the profound remodeling to the sperm epigenome that is initiated at the pronuclear stage of development. Additionally, a better understanding of the effects of environmental insults to the sperm epigenome will aid in decreasing risk to the health of offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80. https://doi.org/10.1126/science.1063127.

    Article  CAS  PubMed  Google Scholar 

  2. Brykczynska U, et al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol. 2010;17:679–87. https://doi.org/10.1038/nsmb.1821.

    Article  CAS  PubMed  Google Scholar 

  3. Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9:2395–402.

    Article  CAS  PubMed  Google Scholar 

  4. Michaud EJ, et al. Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev. 1994;8:1463–72.

    Article  CAS  PubMed  Google Scholar 

  5. Morgan HD, Sutherland HG, Martin DI, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 1999;23:314–8. https://doi.org/10.1038/15490.

    Article  CAS  PubMed  Google Scholar 

  6. Costa F, Non-coding F. RNAs, epigenetics and complexity. Gene. 2008;410:9–17. https://doi.org/10.1016/j.gene.2007.12.008.

    Article  CAS  PubMed  Google Scholar 

  7. Donkin I, Barres R. Sperm epigenetics and influence of environmental factors. Mol Metab. 2018; https://doi.org/10.1016/j.molmet.2018.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Conine CC, Sun F, Song L, Rivera-Perez JA, Rando OJ. Small RNAs gained during epididymal transit of sperm are essential for embryonic development in mice. Dev Cell. 2018;46:470–480 e473. https://doi.org/10.1016/j.devcel.2018.06.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Krawetz SA, et al. A survey of small RNAs in human sperm. Hum Reprod. 2011;26:3401–12. https://doi.org/10.1093/humrep/der329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu WM, et al. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci U S A. 2012;109:490–4. https://doi.org/10.1073/pnas.1110368109.

    Article  PubMed  Google Scholar 

  11. Sharma U, et al. Small RNAs are trafficked from the epididymis to developing mammalian sperm. Dev Cell. 2018;46:481–494 e486. https://doi.org/10.1016/j.devcel.2018.06.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carrell DT, Liu L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl. 2001;22:604–10.

    CAS  PubMed  Google Scholar 

  13. Hammoud SS, et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460:473–8. https://doi.org/10.1038/nature08162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 2014;28:812–28. https://doi.org/10.1101/gad.234294.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2:21–32. https://doi.org/10.1038/35047554.

    Article  CAS  PubMed  Google Scholar 

  16. Ankolkar M, et al. Methylation analysis of idiopathic recurrent spontaneous miscarriage cases reveals aberrant imprinting at H19 ICR in normozoospermic individuals. Fertil Steril. 2012;98:1186–92. https://doi.org/10.1016/j.fertnstert.2012.07.1143.

    Article  CAS  PubMed  Google Scholar 

  17. Aoki VW, Liu L, Carrell DT. Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod. 2005;20:1298–306. https://doi.org/10.1093/humrep/deh798.

    Article  CAS  PubMed  Google Scholar 

  18. Carrell DT, Emery BR, Hammoud S. The aetiology of sperm protamine abnormalities and their potential impact on the sperm epigenome. Int J Androl. 2008;31:537–45. https://doi.org/10.1111/j.1365-2605.2008.00872.x.

    Article  PubMed  Google Scholar 

  19. Hammoud S, Liu L, Carrell DT. Protamine ratio and the level of histone retention in sperm selected from a density gradient preparation. Andrologia. 2009;41:88–94. https://doi.org/10.1111/j.1439-0272.2008.00890.x.

    Article  CAS  PubMed  Google Scholar 

  20. Aoki VW, et al. Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil Steril. 2006;86:1408–15. https://doi.org/10.1016/j.fertnstert.2006.04.024.

    Article  CAS  PubMed  Google Scholar 

  21. Cho C, et al. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod. 2003;69:211–7. https://doi.org/10.1095/biolreprod.102.015115.

    Article  CAS  PubMed  Google Scholar 

  22. Aoki VW, Emery BR, Liu L, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl. 2006;27:890–8. https://doi.org/10.2164/jandrol.106.000703.

    Article  CAS  PubMed  Google Scholar 

  23. Aoki VW, Liu L, Carrell DT. A novel mechanism of protamine expression deregulation highlighted by abnormal protamine transcript retention in infertile human males with sperm protamine deficiency. Mol Hum Reprod. 2006;12:41–50. https://doi.org/10.1093/molehr/gah258.

    Article  CAS  PubMed  Google Scholar 

  24. Jenkins TG, Carrell DT. The paternal epigenome and embryogenesis: poising mechanisms for development. Asian J Androl. 2011;13:76–80. https://doi.org/10.1038/aja.2010.61.

    Article  CAS  PubMed  Google Scholar 

  25. Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature. 2007;450:119–23. https://doi.org/10.1038/nature06236.

    Article  CAS  PubMed  Google Scholar 

  26. Hammoud SS, et al. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod. 2011;26:2558–69. https://doi.org/10.1093/humrep/der192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gatewood JM, Cook GR, Balhorn R, Schmid CW, Bradbury EM. Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem. 1990;265:20662–6.

    CAS  PubMed  Google Scholar 

  28. Murphy PJ, Wu SF, James CR, Wike CL, Cairns BR. Placeholder nucleosomes underlie germline-to-embryo DNA methylation reprogramming. Cell. 2018;172:993–1006 e1013. https://doi.org/10.1016/j.cell.2018.01.022.

    Article  CAS  Google Scholar 

  29. Aston KI, Punj V, Liu L, Carrell DT. Genome-wide sperm deoxyribonucleic acid methylation is altered in some men with abnormal chromatin packaging or poor in vitro fertilization embryogenesis. Fertil Steril. 2012;97:285–92. https://doi.org/10.1016/j.fertnstert.2011.11.008.

    Article  CAS  PubMed  Google Scholar 

  30. Nanassy L, Carrell DT. Abnormal methylation of the promoter of CREM is broadly associated with male factor infertility and poor sperm quality but is improved in sperm selected by density gradient centrifugation. Fertil Steril. 2011;95:2310–4. https://doi.org/10.1016/j.fertnstert.2011.03.096.

    Article  CAS  PubMed  Google Scholar 

  31. Aston KI, et al. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertil Steril. 2015;104:1388–1397 e1381-1385. https://doi.org/10.1016/j.fertnstert.2015.08.019.

    Article  CAS  Google Scholar 

  32. Hammoud SS, Purwar J, Pflueger C, Cairns BR, Carrell DT. Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril. 2010;94:1728–33. https://doi.org/10.1016/j.fertnstert.2009.09.010.

    Article  CAS  PubMed  Google Scholar 

  33. Guibert S, Forne T, Weber M. Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res. 2012;22:633–41. https://doi.org/10.1101/gr.130997.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Illum LRH, Bak ST, Lund S, Nielsen AL. DNA methylation in epigenetic inheritance of metabolic diseases through the male germ line. J Mol Endocrinol. 2018;60:R39–56. https://doi.org/10.1530/JME-17-0189.

    Article  CAS  PubMed  Google Scholar 

  35. Seisenberger S, et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell. 2012;48:849–62. https://doi.org/10.1016/j.molcel.2012.11.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barbosa TD, et al. Paternal chronic high-fat diet consumption reprogrammes the gametic epigenome and induces transgenerational inheritance of metabolic disorder. Diabetologia. 2015;58:S162–3.

    Google Scholar 

  37. Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA. Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature. 2004;429:154. https://doi.org/10.1038/429154a.

    Article  CAS  PubMed  Google Scholar 

  38. Pessot CA, et al. Presence of RNA in the sperm nucleus. Biochem Biophys Res Commun. 1989;158:272–8.

    Article  CAS  PubMed  Google Scholar 

  39. Ostermeier GC, Dix DJ, Miller D, Khatri P, Krawetz SA. Spermatozoal RNA profiles of normal fertile men. Lancet. 2002;360:772–7. https://doi.org/10.1016/S0140-6736(02)09899-9.

    Article  CAS  PubMed  Google Scholar 

  40. Jodar M, et al. Absence of sperm RNA elements correlates with idiopathic male infertility. Sci Transl Med. 2015;7:295re296. https://doi.org/10.1126/scitranslmed.aab1287.

    Article  CAS  Google Scholar 

  41. Sendler E, et al. Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res. 2013;41:4104–17. https://doi.org/10.1093/nar/gkt132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen Q, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2016;351:397–400. https://doi.org/10.1126/science.aad7977.

    Article  CAS  PubMed  Google Scholar 

  43. Sharma U, et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016;351:391–6. https://doi.org/10.1126/science.aad6780.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, et al. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol. 2018;20:535–40. https://doi.org/10.1038/s41556-018-0087-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carone BR, et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell. 2010;143:1084–96. https://doi.org/10.1016/j.cell.2010.12.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ng SF, et al. Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature. 2010;467:963–6. https://doi.org/10.1038/nature09491.

    Article  CAS  PubMed  Google Scholar 

  47. Jenkins TG, Aston KI, Cairns B, Smith A, Carrell DT. Paternal germ line aging: DNA methylation age prediction from human sperm. BMC Genomics. 2018;19:763. https://doi.org/10.1186/s12864-018-5153-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas T. Carrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

James, E.R., Jenkins, T.G., Carrell, D.T. (2020). The Sperm Epigenome and Potential Implications for the Developing Embryo. In: Arafa, M., Elbardisi, H., Majzoub, A., Agarwal, A. (eds) Genetics of Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-37972-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37972-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37971-1

  • Online ISBN: 978-3-030-37972-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics