Skip to main content

Boundary Layer of the Wall Temperature Field

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1116))

Abstract

The paper proposes a method for determining the temperature of small and large dimensional areas of enclosing structures. The purpose of the article is to determine the thickness of the temperature boundary layer at non-stationary modes of heat transfer for areas of random dimension. These areas are filled with scalar heat-conducting medium. It is necessary to solve the tasks related to the calculation of heat transfer in walls for one-dimensional and multidimensional models. It is proved that the thermal resistance of a one-dimensional wall is not less than the thermal resistance of a multidimensional wall in both steady-state and unsteady temperature regimes. It is explained that the temperature fluctuations do not pass inside the body of the wall and are localized on the wall surface. The maximum increase in the temperature flow in the steady-state regime for a multidimensional wall is approximately 41% compared to a one-dimensional wall. The effect of inclusions (thermal bridges) is related to the disseminate of heat flow along a multidimensional wall. This is the meaning of geometric inclusion, that is, increasing the dimension of the area filled with a scalar medium. Geometric inclusions must be taken into account when calculating walls other than one-dimensional walls.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. De Gracia, A., Castell, A., Fernández, C., Cabeza, L.F.: Energy Build. 93, 137 (2015). https://doi.org/10.1016/j.enbuild.2015.01.069

    Article  Google Scholar 

  2. Korniyenko, S.V.: Constr. Unique Build. Struct. 17 (2016)

    Google Scholar 

  3. Petrochenko, M.V., Petrichenko, M.R.: St. Petersbg. State Polytech. Univ. J. 147, 276 (2012)

    Google Scholar 

  4. Zaborova, D.D., Musorina, T.A., Petritchenko, M.R.: STS SPBSPU. Nat. Eng. Sci. 23, 18 (2016). https://doi.org/10.18721/JEST.230102

    Article  Google Scholar 

  5. Vasilyev, G.P., Lichman, V.A., Yurchenko, I.A., Kolesova, M.V.: Mag. Civ. Eng. 66, 60 (2016). https://doi.org/10.5862/MCE.66.6

    Article  Google Scholar 

  6. Berardi, U., Tronchin, L., Manfren, M., Nastasi, B.: Energies 11 (2018). https://doi.org/10.3390/en11040872

    Article  Google Scholar 

  7. Mingotti, N., Chenvidyakarn, T., Woods, A.W.: Energy Build. 58, 237 (2013). https://doi.org/10.1016/j.enbuild.2012.11.033

    Article  Google Scholar 

  8. Baiburin, A.K., Rybakov, M.M., Vatin, N.I.: Mag. Civ. Eng. 85, 3 (2019). https://doi.org/10.18720/MCE.85.1

    Article  Google Scholar 

  9. Korniyenko, S.V.: Appl. Mech. Mater. 618, 509 (2014). https://doi.org/10.4028/www.scientific.net/AMM.618.509

    Article  Google Scholar 

  10. Kornienko, S.V.: Vestn. MGSU 132 (2016). https://doi.org/10.22227/1997-0935.2016.11.132-145

  11. Tusnina, O.A., Emelianov, A.A., Tusnina, V.M.: Mag. Civ. Eng. 43 (2013)

    Google Scholar 

  12. Gagarin, V., Akhmetov, V., Zubarev, K.: MATEC Web Conference (2018). https://doi.org/10.1051/matecconf/201817003014

    Article  Google Scholar 

  13. Gagarin, V.G., Kozlov, V.V., Neklyudov, A.Yu.: BCE Bull. Constr. Equip. 2, 978 (2016)

    Google Scholar 

  14. Minea, A.A.: Int. J. Heat Mass Transf. 68, 78 (2014)

    Article  Google Scholar 

  15. Hatvani-Kovacs, G., Belusko, M., Pockett, J., Boland, J.: Energy Build. 158, 290 (2018)

    Article  Google Scholar 

  16. Yaïci, W., Entchev, E.: Int. J. Heat Mass Transf. 144 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118648

    Article  Google Scholar 

  17. Gagliano, A., Patania, F., Nocera, F., Signorello, C.: Energy Build. 72, 361 (2014). https://doi.org/10.1016/j.enbuild.2013.12.060

    Article  Google Scholar 

  18. Reilly, A., Kinnane, O.: Appl. Energy 198, 108 (2017). https://doi.org/10.1016/j.apenergy.2017.04.024

    Article  Google Scholar 

  19. Johra, H., Heiselberg, P.: Renew. Sustain. Energy Rev. 69, 19 (2017). https://doi.org/10.1016/j.rser.2016.11.145

    Article  Google Scholar 

  20. Asdrubali, F., D’Alessandro, F., Schiavoni, S.: Sustain. Mater. Technol. 4, 1 (2015). https://doi.org/10.1016/j.susmat.2015.05.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Musorina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Musorina, T., Gamayunova, O., Petrichenko, M., Soloveva, E. (2020). Boundary Layer of the Wall Temperature Field. In: Popovic, Z., Manakov, A., Breskich, V. (eds) VIII International Scientific Siberian Transport Forum. TransSiberia 2019. Advances in Intelligent Systems and Computing, vol 1116. Springer, Cham. https://doi.org/10.1007/978-3-030-37919-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37919-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37918-6

  • Online ISBN: 978-3-030-37919-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics