Skip to main content

Dedekind and Hardy Type Sums and Trigonometric Sums Induced by Quadrature Formulas

  • Chapter
  • First Online:

Abstract

The Dedekind and Hardy sums and several their generalizations, as well as the trigonometric sums obtained from the quadrature formulas with the highest (algebraic or trigonometric) degree of exactness are studied. Beside some typical trigonometric sums mentioned in the introductory section, the Lambert and Eisenstein series are introduced and some remarks and observations for Eisenstein series are given. Special attention is dedicated to Dedekind and Hardy sums, as well as to Dedekind type Daehee-Changhee (DC) sums and their trigonometric representations and connections with some special functions. Also, the reciprocity law of the previous mentioned sums is studied. Finally, the trigonometric sums obtained from Gauss-Chebyshev quadrature formulas, as well as ones obtained from the so-called trigonometric quadrature rules, are considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55 (Dover, New York, 1965)

    Google Scholar 

  2. T.M. Apostol, Generalized dedekind sums and transformation formulae of certain Lambert series. Duke Math. J. 17, 147–157 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  3. T.M. Apostol, On the Lerch zeta function. Pac. J. Math. 1, 161–167 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  4. T.M. Apostol, Theorems on generalized Dedekind sums. Pac. J. Math. 2, 1–9 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  5. T.M. Apostol, Modular Functions and Dirichlet Series in Number Theory (Springer, New York, 1976)

    Book  MATH  Google Scholar 

  6. A. Bayad, Sommes de Dedekind elliptiques et formes de Jacobi. Ann. Instit. Fourier 51(1), 29–42 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Bayad, Y. Simsek, Dedekind sums involving Jacobi modular forms and special values of Barnes zeta functions. Ann. Inst. Fourier, Grenoble 61(5), 1977–1993 (2011)

    Google Scholar 

  8. M. Beck, Dedekind cotangent sums. Acta Arithmetica 109(2), 109–130 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. B.C. Berndt, On the Hurwitz zeta-function. Rocky Mt. J. Math. 2(1), 151–157 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. B.C. Berndt, Generalized Dedekind eta-Functions and generalized Dedekind sums. Trans. Am. Math. Soc. 178, 495–508 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. B.C. Berndt, Dedekind sums and a paper of G. H. Hardy. J. Lond. Math. Soc. (2). 13(1), 129–137 (1976)

    Google Scholar 

  12. B.C. Berndt, Reciprocity theorems for Dedekind sums and generalizations. Adv. Math. 23(3), 285–316 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. B.C. Berndt, Analytic Eisenstein series, theta-functions and series relations in the spirit of Ramanujan. J. Reine Angew. Math. 303/304, 332–365 (1978)

    Google Scholar 

  14. B.C. Berndt, L.A. Goldberg, Analytic properties of arithmetic sums arising in the theory of the classical theta-functions. SIAM J. Math. Anal. 15, 143–150 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. B.C. Berndt, B.P. Yeap, Explicit evaluations and reciprocity theorems for finite trigonometric sums. Adv. Appl. Math. 29(3), 358–385 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Carlitz, Some theorems on generalized Dedekind sums. Pac. J. Math. 3, 513–522 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Chen, On some trigonometric power sums. Int. J. Math. Math. Sci. 30(3), 185–191 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. T.S. Chihara, An Introduction to Orthogonal Polynomials (Gordon and Breach, New York, 1978)

    MATH  Google Scholar 

  19. J. Choi, Some Identities involving the Legendre’s chi-function. Commun. Korean Math. Soc. 22(2), 219–225 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Choi, D.S. Jang, H.M. Srivastava, A generalization of the Hurwitz-Lerch zeta function. Integral Transform. Spec. Funct. 19(1–2), 65–79 (2008)

    MathSciNet  MATH  Google Scholar 

  21. W. Chu, Reciprocal relations for trigonometric sums. Rocky Mt. J. Math. 48(1), 121–140 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Cvijović, Integral representations of the Legendre chi function. J. Math. Anal. Appl. 332, 1056–1062 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Cvijović, Summation formulae for finite cotangent sums. Appl. Math. Comput. 215, 1135–1140 (2009)

    MathSciNet  MATH  Google Scholar 

  24. D. Cvijović, Summation formulae for finite tangent and secant sums. Appl. Math. Comput. 218, 741–745 (2011)

    MathSciNet  MATH  Google Scholar 

  25. D. Cvijović, J. Klinkovski, Values of the Legendre chi and Hurwitz zeta functions at rational arguments. Math. Comp. 68, 1623–1630 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Cvijović, J. Klinkovski, Finite cotangent sums and the Riemann zeta function. Math. Slovaca 50(2), 149–157 (2000)

    MathSciNet  MATH  Google Scholar 

  27. D. Cvijović, H.S. Srivastava, Summation of a family of finite secant sums. Appl. Math. Copmput. 190, 590–598 (2007)

    MathSciNet  MATH  Google Scholar 

  28. D. Cvijović, H.S. Srivastava, Closed-form summations of Dowker’s and related trigonometric sums. J. Phys. A 45(37), 374015 (2012)

    Google Scholar 

  29. U. Dieter, Cotangent sums, a further generalization of Dedekind sums. J. Number Theory 18, 289–305 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. J.S. Dowker, On Verlinde’s formula for the dimensions of vector bundles on moduli spaces. J. Phys. A 25(9), 2641–2648 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. C M. da Fonseca, V. Kowalenko, On a finite sum with powers of cosines. Appl. Anal. Discrete Math. 7, 354–377 (2013)

    Google Scholar 

  32. C.M. da Fonseca, M.L. Glasser, V. Kowalenko, Basic trigonometric power sums with applications. Ramanujan J. 42(2), 401–428 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. C.M. da Fonseca, M.L. Glasser, V. Kowalenko, Generalized cosecant numbers and trigonometric inverse power sums. Appl. Anal. Discrete Math. 42(2), 70–109 (2018)

    MathSciNet  Google Scholar 

  34. W. Gautschi, On the remainder term for analytic functions of Gauss-Lobatto and Gauss-Radau quadratures. Rocky Mt. J. Math. 21, 209–226 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. W. Gautschi, Orthogonal Polynomials: Computation and Approximation (Clarendon Press, Oxford, 2004)

    MATH  Google Scholar 

  36. W. Gautschi, S. Li, The remainder term for analytic functions of Gauss-Radau and Gauss-Lobatto quadrature rules with multiple end points. J. Comput. Appl. Math. 33, 315–329 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. W. Gautschi, S. Li, Gauss-Radau and Gauss-Lobatto quadratures with double end points. J. Comput. Appl. Math. 34, 343–360 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. W. Gautschi, G.V. Milovanović, s-orthogonality and construction of Gauss-Turán-type quadrature formulae. J. Comput. Appl. Math. 86, 205–218 (1997)

    Google Scholar 

  39. A. Ghizzetti, A. Ossicini, Quadrature Formulae (Akademie Verlag, Berlin, 1970)

    Book  MATH  Google Scholar 

  40. L.A. Goldberg, Transformation of Theta-Functions and Analogues of Dedekind Sums, Thesis, University of Illinois Urbana (1981)

    Google Scholar 

  41. P.J. Grabner, H. Prodinger, Secant and cosecant sums and Bernoulli-Nörlund polynomials. Quaest. Math. 30, 159–165 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 7th edn. (Elsevier/Academic Press, Amsterdam, 2007)

    MATH  Google Scholar 

  43. E. Grosswald, Dedekind-Rademacher sums. Am. Math. Mon. 78, 639–644 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  44. E. Grosswald, Dedekind-Rademacher sums and their reciprocity formula. J. Reine. Angew. Math. 25(1), 161–173 (1971)

    MathSciNet  MATH  Google Scholar 

  45. J. Guillera, J. Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent. Ramanujan J. 16(3), 247–270 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. R.R. Hall, J.C. Wilson, D. Zagier, Reciprocity formulae for general Dedekind-Rademacher sums. Acta Arith. 73(4), 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  47. E.R. Hansen, A Table of Series and Products (Prentice-Hall, Englewood Cliffs, 1975)

    MATH  Google Scholar 

  48. G.H. Hardy, On certain series of discontinous functions connected with the modular functions. Quart. J. Math. 36, 93–123 (1905); [Collected Papers, vol. IV (Clarendon Press, Oxford, 1969), pp. 362–392]

    Google Scholar 

  49. M.E. Hoffman, Derivative polynomials and associated integer sequences. Electron. J. Combin. 6, 13 (1999), Research Paper 21

    Google Scholar 

  50. T. Kim, Note on the Euler numbers and polynomials. Adv. Stud. Contemp. Math. 17, 131–136 (2008)

    MathSciNet  MATH  Google Scholar 

  51. T. Kim, Euler numbers and polynomials associated with zeta functions. Abstr. Appl. Anal. 2008, 11 (2008), Art. ID 581582

    Google Scholar 

  52. T. Kim, Note on Dedekind type DC sums. Adv. Stud. Contemp. Math. (Kyungshang) 18(2), 249–260 (2009)

    Google Scholar 

  53. M.I. Knoop, Modular Functions in Analytic Number Theory (Markham Publishing Company, Chicago, 1970)

    Google Scholar 

  54. N. Koblitz, Introduction to Elliptic Curves and Modular Forms (Springer, New York, 1993)

    Book  MATH  Google Scholar 

  55. J. Lewittes, Analytic continuation of the series \(\sum \left ( m+nz\right ) ^{-s}\). Trans. Am. Math. Soc. 159, 505–509 (1971)

    Google Scholar 

  56. J. Lewittes, Analytic continuation of Eisenstein series. Trans. Am. Math. Soc. 177, 469–490 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  57. A. Markov, Sur la méthode de Gauss pour le calcul approché des intégrales. Math. Ann. 25, 427–432 (1885)

    Article  MathSciNet  Google Scholar 

  58. G. Mastroianni, G.V. Milovanović, Interpolation Processes – Basic Theory and Applications. Springer Monographs in Mathematics (Springer, Berlin/Heidelberg/New York, 2008)

    Google Scholar 

  59. G.V. Milovanović, Construction of s-orthogonal polynomials and Turán quadrature formulae, in Numerical Methods and Approximation Theory III, ed. by G.V. Milovanović (Niš, 1987) (Univ. Niš, Niš, 1988), pp. 311–328

    Google Scholar 

  60. G.V. Milovanović, Quadrature with multiple nodes, power orthogonality, and moment-preserving spline approximation. J. Comput. Appl. Math. 127, 267–286 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  61. G.V. Milovanović, D. Joksimović, On a connection between some trigonometric quadrature rules and Gauss-Radau formulas with respect to the Chebyshev weight. Bull. Cl. Sci. Math. Nat. Sci. Math. 39, 79–88 (2014)

    MathSciNet  MATH  Google Scholar 

  62. G.V. Milovanović, A.S. Cvetković, M.P. Stanić, Trigonometric orthogonal systems and quadrature formulae. Comput. Math. Appl. 56, 2915–2931 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  63. G.V. Milovanović, D.S. Mitrinović, T.M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros (World Scientific Publishing Co., Inc., River Edge, 1994)

    Book  MATH  Google Scholar 

  64. G.V. Milovanović, M.S. Pranić, M.M. Spalević, Quadrature with multiple nodes, power orthogonality, and moment-preserving spline approximation, Part II. Appl. Anal. Discrete Math. 13, 1–27 (2019)

    Article  MathSciNet  Google Scholar 

  65. G.V. Milovanović, T.M. Rassias (eds.), Analytic Number Theory, Approximation Theory, and Special Functions. In Honor of Hari M. Srivastava (Springer, New York, 2014)

    Google Scholar 

  66. G.V. Milovanović, T.M. Rassias, Inequalities connected with trigonometric sums, in Constantin Carathéodory: an International Tribute, vol. II (World Science Publications, Teaneck, 1991), pp. 875–941

    Book  MATH  Google Scholar 

  67. G.V. Milovanović, M.M. Spalević, M.S. Pranić, On the remainder term of Gauss-Radau quadratures for analytic functions. J. Comput. Appl. Math. 218, 281–289 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  68. G.V. Milovanović, M.P. Stanić, Quadrature rules with multiple nodes, in Mathematical Analysis, Approximation Theory and Their Applications, ed. by T.M. Rassias, V. Gupta (Springer, Cham, 2016), pp. 435–462

    Chapter  Google Scholar 

  69. S.E. Notaris, The error norm of Gauss-Radau quadrature formulae for Chebyshev weight functions. BIT Numer. Math. 50, 123–147 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  70. A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and Series, vol. 1. Elementary functions (Gordon and Breach Science Publishers, New York, 1986)

    Google Scholar 

  71. A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and Series, vol. 2 (Gordon and Breach, New York, 1986)

    MATH  Google Scholar 

  72. H. Rademacher, Zur Theorie der Modulfunktionen. J. Reine Angew. Math. 167, 312–336 (1932)

    MathSciNet  MATH  Google Scholar 

  73. H. Rademacher, Über eine Reziprozitätsformel aus der Theorie der Modulfunktionen. Mat. Fiz. Lapok 40, 24–34 (1933) (Hungarian)

    Google Scholar 

  74. H. Rademacher, Die reziprozitatsformel für Dedekindsche Summen. Acta Sci. Math. (Szeged) 12(B), 57–60 (1950)

    Google Scholar 

  75. H. Rademacher, Topics in Analytic Number Theory, Die Grundlehren der Math. Wissenschaften, Band 169 (Springer, Berlin, 1973)

    Google Scholar 

  76. H. Rademacher, E. Grosswald, Dedekind Sums, The Carus Mathematical Monographs, vol. 16 (The Mathematical Association of America, Washington, DC, 1972)

    Book  MATH  Google Scholar 

  77. M.T. Rassias, L. Toth, Trigonometric representations of generalized Dedekind and Hardy sums via the discrete Fourier transform, in Analytic Number Theory: In Honor of Helmut Maier’s 60th Birthday, ed. by C. Pomerance, M.T. Rassias (Springer, Cham, 2015), pp. 329–343

    Chapter  Google Scholar 

  78. T. Schira, The remainder term for analytic functions of Gauss-Lobatto quadratures. J. Comput. Appl. Math. 76, 171–193 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  79. Y.G. Shi, On Turán quadrature formulas for the Chebyshev weight. J. Approx. Theory 96, 101–110 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  80. Y.G. Shi, On Gaussian quadrature formulas for the Chebyshev weight. J. Approx. Theory 98, 183–195 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  81. Y.G. Shi, Generalized Gaussian quadrature formulas with Chebyshev nodes. J. Comput. Math. 17(2), 171–178 (1999)

    MathSciNet  MATH  Google Scholar 

  82. B. Schoeneberg, Elliptic Modular Functions: An Introduction, Die Grundlehren der mathematischen Wissenschaften, Band 203 (Springer, New York/Heidelberg, 1974)

    Book  Google Scholar 

  83. R. Sczech, Dedekind summen mit elliptischen Funktionen. Invent. Math. 76, 523–551 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  84. Y. Simsek, Relations between theta-functions Hardy sums Eisenstein and Lambert series in the transformation formula of \(\log \eta _{g,h}(z)\). J. Number Theory 99, 338–360 (2003)

    Google Scholar 

  85. Y. Simsek, Generalized Dedekind sums associated with the Abel sum and the Eisenstein and Lambert series. Adv. Stud. Contemp. Math. (Kyungshang) 9(2), 125–137 (2004)

    Google Scholar 

  86. Y. Simsek, On generalized Hardy sums S 5(h, k). Ukrainian Math. J. 56(10), 1434–1440 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  87. Y. Simsek, q-Dedekind type sums related to q-zeta function and basic L-series. J. Math. Anal. Appl. 318(1), 333–351 (2006)

    Google Scholar 

  88. Y. Simsek, On analytic properties and character analogs of Hardy sums. Taiwanese J. Math. 13(1), 253–268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  89. Y. Simsek, Special functions related to Dedekind-type DC-sums and their applications. Russ. J. Math. Phys. 17(4), 495–508 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  90. Y. Simsek, D. Kim, J.K. Koo, Oon elliptic analogue to the Hardy sums. Bull. Korean Math. Soc. 46(1), 1–10 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  91. R. Sitaramachandrarao, Dedekind and Hardy sums. Acta Arith. 48, 325–340 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  92. H.M. Srivastava, A note on the closed-form summation of some trigonometric series. Kobe J. Math. 16(2), 177–182 (1999)

    MathSciNet  MATH  Google Scholar 

  93. H.M. Srivastava, A. Pinter, Remarks on some relationships between the Bernoulli and Euler polynomials. Appl. Math. Lett. 17(4), 375–380 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  94. H.M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions (Kluwer Academic Publishers, Dordrecht/Boston/London, 2001)

    Book  MATH  Google Scholar 

  95. T.J. Stijeltes, Note sur quelques formules pour l’évaluation de certaines intégrales, Bul. Astr. Paris 1, 568–569 (1884) [Oeuvres I, 426–427]

    Google Scholar 

  96. S.K. Suslov, Some Expansions in basic Fourier series and related topics. J. Approx. Theory 115(2), 289–353 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  97. P. Turán, On the theory of the mechanical quadrature. Acta Sci. Math. Szeged 12, 30–37 (1950)

    MathSciNet  MATH  Google Scholar 

  98. A.H. Turetzkii, On quadrature formulae that are exact for trigonometric polynomials. East J. Approx. 11(3), 337–335 (2005). [Translation in English from Uchenye Zapiski, Vypusk 1 (149). Seria Math. Theory of Functions, Collection of papers, Izdatel’stvo Belgosuniversiteta imeni V.I. Lenina, Minsk (1959), pp. 31–54]

    Google Scholar 

  99. E.T. Wittaker, G.N. Watson, A Course of Modern Analysis, 4th edn. (Cambridge University Press, Cambridge, 1962)

    Google Scholar 

  100. M. Waldschmidt, P. Moussa, J.M. Luck, C. Itzykson, From Number Theory to Physics (Springer, New York, 1995)

    MATH  Google Scholar 

  101. D. Zagier, Higher dimensional Dedekind sums. Math. Ann. 202, 149–172 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors have been supported by the Serbian Academy of Sciences and Arts, Φ-96 (G. V. Milovanović) and by the Scientific Research Project Administration of Akdeniz University (Y. Simsek).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milovanović, G.V., Simsek, Y. (2020). Dedekind and Hardy Type Sums and Trigonometric Sums Induced by Quadrature Formulas. In: Raigorodskii, A., Rassias, M. (eds) Trigonometric Sums and Their Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-37904-9_10

Download citation

Publish with us

Policies and ethics