Skip to main content

Introduction

  • Chapter
  • First Online:
Quantitative Tamarkin Theory

Part of the book series: CRM Short Courses ((CRMSC))

  • 444 Accesses

Abstract

This chapter gives a brief overview of the primary materials in this book. It starts from the background of symplectic geometry with two famous results: Gromov’s non-squeezing theorem and Arnold’s conjecture (Lagrangian version). Then a discussion on the key concept of singular support follows, with an emphasis on its geometric interpretation. With the concept of singular support, Tamarkin categories will be described, and the Guillermou-Kashiwara-Schapira sheaf quantization will be formulated. These form the underlying platform where various symplectic objects can be expressed in terms of sheaves. Moreover, there is a section devoted to the background material on persistence k-modules, which can be viewed as elements in a special Tamarkin category; there is another section introducing Hofer’s geometry, which is an iconic quantitative apparatus in symplectic geometry. Finally, a brief argument showing that the sheaf counterpart of the standard symplectic homology can be constructed from a certain projector in a Tamarkin category will be provided. This yield an alternative approach to study domains of Euclidean spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is based on a discussion and joint work with Leonid Polterovich.

References

  1. Asano, T., Ike, Y.: Persistence-like distance on Tamarkin’s category and symplectic displacement energy (2017). Preprint. arXiv: 1712.06847

    Google Scholar 

  2. Chaperon, M.: Phases génératrices en géométrie symplectique. In: Les rencontres physiciens-mathématiciens de Strasbourg-RCP25, vol. 41, pp. 191–197 (1990)

    Google Scholar 

  3. Chiu, S.F.: Nonsqueezing property of contact balls. Duke Math. J. 166(4), 605–655 (2017)

    Article  MathSciNet  Google Scholar 

  4. D’Agnolo, A., Kashiwara, M.: Riemann-Hilbert correspondence for holonomic \({\mathcal D}\)-modules. Publications mathématiques de l’IHÉS 123(1), 69–197 (2016)

    Google Scholar 

  5. Eliashberg, Y., Kim, S.S., Polterovich, L.: Geometry of contact transformations and domains: orderability versus squeezing. Geom. Topol. 10(3), 1635–1747 (2006)

    Article  MathSciNet  Google Scholar 

  6. Fraser, M.: Contact non-squeezing at large scale in \(\mathbb {R}^{2n} \times S^1\). Int. J. Math. 27(13), 1650107 (2016)

    Google Scholar 

  7. Gromov, M.: Pseudo holomorphic curves in symplectic manifolds. Invent. Math. 82(2), 307–347 (1985)

    Article  MathSciNet  Google Scholar 

  8. Guillermou, S.: Sheaves and symplectic geometry of cotangent bundles (2019). Preprint. arXiv: 1905.07341

    Google Scholar 

  9. Guillermou, S., Kashiwara, M., Schapira, P.: Sheaf quantization of Hamiltonian isotopies and applications to nondisplaceability problems. Duke Math. J. 161(2), 201–245 (2012)

    Article  MathSciNet  Google Scholar 

  10. Hofer, H., Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser, Basel (1994)

    Book  Google Scholar 

  11. Kashiwara, M.: The Riemann-Hilbert problem for holonomic systems. Publ. Res. Inst. Math. Sci. 20(2), 319–365 (1984)

    Article  MathSciNet  Google Scholar 

  12. Kashiwara, M., Schapira, P.: Persistent homology and microlocal sheaf theory. J. Appl. Comput. Topol. 2(1–2), 83–113 (2018)

    Article  MathSciNet  Google Scholar 

  13. McDuff, D., Salamon, D.: Introduction to Symplectic Topology, 2nd edn. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  14. McDuff, D., Salamon, D.: J-holomorphic Curves and Symplectic Topology, vol. 52. American Mathematical Society, Providence (2012)

    MATH  Google Scholar 

  15. Nadler, D., Zaslow, E.: Constructible sheaves and the Fukaya category. J. Am. Math. Soc. 22(1), 233–286 (2009)

    Article  MathSciNet  Google Scholar 

  16. Ng, L., Rutherford, D., Shende, V., Sivek, S., Zaslow, E.: Augmentations are sheaves (2015). Preprint. arXiv: 1502.04939

    Google Scholar 

  17. Oancea, A.: A survey of Floer homology for manifolds with contact type boundary or symplectic homology. In: Symplectic geometry and Floer homology. A survey of Floer homology for manifolds with contact type boundary or symplectic homology. Ensaios Matemáticos, vol. 7, pp. 51–91. Sociedade Brasileira de Matemática, Rio de Janeiro (2004)

    Google Scholar 

  18. Polterovich, L.: Symplectic displacement energy for Lagrangian submanifolds. Ergodic Theory Dynam. Syst. 13(2), 357–367 (1993)

    Article  MathSciNet  Google Scholar 

  19. Polterovich, L., Shelukhin, E.: Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules. Selecta Math. (N.S.) 22(1), 227–296 (2016)

    Google Scholar 

  20. Sandon, S.: Contact homology, capacity and non-squeezing in \(\mathbb {R}^{2n}\times S^{1} \) via generating functions. Ann. Inst. Fourier 61(1), 145–185 (2011)

    Google Scholar 

  21. Sandon, S.: Generating functions in symplectic topology. Lecture notes for the CIMPA research school on geometric methods in classical dynamical systems, Santiago (2014)

    Google Scholar 

  22. Shende, V., Treumann, D., Zaslow, E.: Legendrian knots and constructible sheaves. Invent. Math. 207(3), 1031–1133 (2017)

    Article  MathSciNet  Google Scholar 

  23. Tamarkin, D.: Microlocal condition for non-displaceability. In: Algebraic and Analytic Microlocal Analysis, pp. 99–223. Springer, Cham (2013)

    Google Scholar 

  24. Tamarkin, D.: Microlocal category (2015). Preprint. arXiv: 1511.08961

    Google Scholar 

  25. Traynor, L.: Symplectic homology via generating functions. Geom. Funct. Anal. 4(6), 718–748 (1994)

    Article  MathSciNet  Google Scholar 

  26. Tsygan, B.: A microlocal category associated to a symplectic manifold. In: Algebraic and Analytic Microlocal Analysis, pp. 225–337. Springer, Cham (2013)

    Google Scholar 

  27. Usher, M.: Hofer’s metrics and boundary depth. Annales scientifiques de l’École Normale Supérieure 46(1), 57–129 (2013)

    Article  MathSciNet  Google Scholar 

  28. Viterbo, C.: Symplectic topology as the geometry of generating functions. Math. Ann. 292(1), 685–710 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J. (2020). Introduction. In: Quantitative Tamarkin Theory. CRM Short Courses. Springer, Cham. https://doi.org/10.1007/978-3-030-37888-2_1

Download citation

Publish with us

Policies and ethics