Skip to main content

Automatic Compensation of Parallel Capacitance of TPoS MEMS Resonator for Accurate Frequency Tracking with PLL-Based Oscillator Circuit

  • Conference paper
  • First Online:
Sensors and Microsystems (AISEM 2019)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 629))

Included in the following conference series:

Abstract

This paper proposes an oscillator circuit based on a phase-locked loop which automatically compensates for the parasitic capacitance of Thin-film Piezoelectric-on-Silicon (TPoS) contour-mode resonators. The circuit enables accurate tracking of the mechanical parameters of the resonators in demanding sensor applications by advantageously combining their favorable Q-factor with the electrical resonance enhancement arising from the automatic cancellation of parallel capacitance. Preliminary results on tracking the resonant frequency of a TPoS resonator due to temperature variations show a temperature coefficient of frequency of 53.4 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zuniga C, Rinaldi M, Piazza G (2009) Quality factor of MEMS and NEMS AlN Contour Mode Resonators in liquid media. In: IEEE international ultrasonics symposium, pp 2568–2571

    Google Scholar 

  2. Vignola JF, Judge JA, Jarzynski J, Zalalutdinov M, Houston BH, Baldwin LW (2006) Effect of viscous loss on mechanical resonators designed for mass detection. Appl Phys Lett 88:041921

    Article  ADS  Google Scholar 

  3. Ferrari M, Ferrari V, Marioli D (2010) Interface circuit for multiple-harmonic analysis on quartz resonator sensors to investigate on liquid solution microdroplets. Sens Actuators B Chem 146(2):489–494

    Article  Google Scholar 

  4. Demori M, Baù M, Ferrari M, Ferrari V (2018) Interrogation techniques and interface circuits for coil-coupled passive sensors. Micromachines 9(9):449

    Article  Google Scholar 

  5. Baù M, Ferrari M, Ferrari V (2017) Analysis and validation of contactless time-gated interrogation technique for quartz resonator sensors. Sensors 17(6):1264

    Article  Google Scholar 

  6. Ferrari M, Baù M, Tonoli E, Ferrari V (2013) Piezoelectric resonant sensors with contactless interrogation for mass-sensitive and acoustic load detection. Sens Actuators A Phys 202:100–105

    Article  Google Scholar 

  7. Seo J, Brand O (2008) High Q-factor in-plane-mode resonant microsensor platform for gaseous/liquid environment. Microelectromech Syst J 17:483–493

    Article  Google Scholar 

  8. Ali A, Lee JE-Y (2017) Single device on-chip feedthrough cancellation for enhanced electrical characterization of piezoelectric-on-silicon resonators in liquid. Sens Actuator A 260:131–138

    Article  Google Scholar 

  9. Ali A, Lee JE-Y (2018) Piezoelectric-on-silicon square wine glass mode resonator for enhanced electrical characterization in water. IEEE Trans Electron Devices 65:1925–1931

    Article  ADS  Google Scholar 

  10. Toledo J, Manzaneque T, Ruiz-Díez V, Kucera M, Pfusterschmied G, Wistrela E, Schmid U, Sánchez-Rojas JL (2016) Piezoelectric resonators and oscillator circuit based on higher-order out-of-plane modes for density-viscosity measurements of liquids. J Micromech Microeng 26(8):131–138

    Article  Google Scholar 

  11. Ferrari M, Ferrari V, Marioli D, Taroni A, Suman M, Dalcanale E (2006) In-liquid sensing of chemical compounds by QCM sensors coupled with high-accuracy ACC oscillator. IEEE Trans Instrum Meas 55(3):828–834

    Article  Google Scholar 

  12. Arnau A, García JV, Jimenez Y, Ferrari V, Ferrari M (2008) Improved electronic interfaces for AT-cut quartz crystal microbalance sensors under variable damping and parallel capacitance conditions. Rev Sci Instrum 79(7):075110

    Article  ADS  Google Scholar 

  13. Cerini F, Ferrari M, Ferrari V, Russo A, Urquia MA, Ardito R, De Masi B, Sedmik RIP (2017) Electro-mechanical modelling and experimental characterization of a high-aspect-ratio electrostatic-capacitive MEMS device. Sens Actuators A Phys 266:219–231

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Baù .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baù, M., Ferrari, M., Ferrari, V., Ali, A., Lee, J.EY. (2020). Automatic Compensation of Parallel Capacitance of TPoS MEMS Resonator for Accurate Frequency Tracking with PLL-Based Oscillator Circuit. In: Di Francia, G., et al. Sensors and Microsystems. AISEM 2019. Lecture Notes in Electrical Engineering, vol 629. Springer, Cham. https://doi.org/10.1007/978-3-030-37558-4_41

Download citation

Publish with us

Policies and ethics