Skip to main content

Bone Quality Assessment at the Atomic Scale

  • Chapter
  • First Online:
The Computational Mechanics of Bone Tissue

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 35))

  • 433 Accesses

Abstract

The assessment of osteoporosis regarding bone mass and microarchitecture “quality” contributes in determining fracture risk. Therefore, the crystalline structure of hydroxyapatite may indicate the quality of trabecular bones through the identification of crystallite sizes, microhardness and microdeformation values and calcium and phosphorous proportions in the three types of bones: normal, osteopenic, and osteoporotic. Nine L1 vertebrae-dried trabecular bones from human cadavers were used. The characterization of the three types of bones was made through scanning electron microscopy, EDS, microhardness, and X-ray diffractometry with the Rietveld refinement method. The results show that the microstructural characterization possibilities the identification of the three types of bones: normal, osteopenic, and osteoporotic, allowing the detection of osteoporosis based on bone quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.I.H. (2013) National Institute of Arthritis and Muscoloskeletal and Skin Deseases. Consensus statement—osteoporosis prevention, diagnosis, and therapy

    Google Scholar 

  2. Bouxsein M (2003) Bone quality: where do we go from here? Osteoporosis Int 14(5):118–127. 9 Jan 2003. ISSN 0937-941X. Available at: http://dx.doi.org/10.1007/s00198-003-1489-x

    Article  Google Scholar 

  3. Deborah M, Olof J, Hans W (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312

    Google Scholar 

  4. Kleerekoper M, Balena R (1991) Fluorides and Osteoporosis. Ann Rev Nutr 11(1):309–324. 01 July 1991. ISSN 0199-9885. Available at: http://dx.doi.org/10.1146/annurev.nu.11.070191.001521. Consulted on: 16 July 1991

    Article  CAS  PubMed  Google Scholar 

  5. Miller P (2006) Guidelines for the diagnosis of osteoporosis: T-scores vs fractures. Rev Endocr Metab Disord 7(1–2):75–89. 01 June 2006. ISSN 1389-9155. Available at: http://dx.doi.org/10.1007/s11154-006-9006-0

  6. Qu Y et al (2005) The effect of raloxifene therapy on the risk of new clinical vertebral fractures at three and six months: a secondary analysis of the MORE trial. Curr Med Res Opin 21(12):1955–1959. 01 Dec 2005. ISSN 0300-7995. Available at: http://informahealthcare.com/doi/abs/10.1185/030079905X75032. Consulted on: 16 July 2013

    Article  CAS  PubMed  Google Scholar 

  7. Genant HK, Jiang Y (2006) Advanced imaging assessment of bone quality. Ann NY Acad Sci 1068(1):410–428. ISSN 1749-6632. Available at: http://dx.doi.org/10.1196/annals.1346.038

  8. Gourion-Arsiquaud S et al (2009) Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J Bone Miner Res 24(9):1565–1571. ISSN 1523-4681. Available at: http://dx.doi.org/10.1359/jbmr.090414

    Article  PubMed  PubMed Central  Google Scholar 

  9. Licata A (2009) Bone density vs bone quality: what’s a clinician to do? Clevel Clin J Med 76(6):331–336. Available at: http://www.ccjm.org/content/76/6/331.abstract

    Article  PubMed  Google Scholar 

  10. N.O.F. (2013) National Osteoporosis Foundation—Physicians’ guide to prevention and treatment of osteoporosis

    Google Scholar 

  11. Parfitt AM (2002) Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 30(1):5–7. ISSN 8756-3282. Available at: http://www.sciencedirect.com/science/article/pii/S8756328201006421

    Article  CAS  PubMed  Google Scholar 

  12. Qiu S et al (2005) The morphological association between microcracks and osteocyte lacunae in human cortical bone. Bone 37(1):10–15. ISSN 8756-3282. Available at: http://www.sciencedirect.com/science/article/pii/S8756328205000086

    Article  PubMed  Google Scholar 

  13. Van Der Linden JC et al (2001) Mechanical consequences of bone loss in cancellous bone. J Bone Miner Res 16(3):457–465. ISSN 1523-4681. Available at: http://dx.doi.org/10.1359/jbmr.2001.16.3.457

    Article  CAS  PubMed  Google Scholar 

  14. Van Der Meulen MCH, Jepsen KJ, Mikić B (2001) Understanding bone strength: size isn’t everything. Bone 29(2):101–104. ISSN 8756-3282. Available at: http://www.sciencedirect.com/science/article/pii/S8756328201004914

    Article  CAS  PubMed  Google Scholar 

  15. Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporosis Int 17(3):319–336. 01 Mar 2006. ISSN 0937-941X. Available at: http://dx.doi.org/10.1007/s00198-005-2035-9

    Article  PubMed  CAS  Google Scholar 

  16. W.H.O. (2001) World Health Organization Study Group

    Google Scholar 

  17. Zebaze RMD et al (2005) Femoral neck shape and the spatial distribution of its mineral mass varies with its size: clinical and biomechanical implications. Bone 37(2):243–252. ISSN 8756-3282. Available at: http://www.sciencedirect.com/science/article/pii/S8756328205001006

    Article  PubMed  Google Scholar 

  18. Allen MR, Burr DB (2011) Bisphosphonate effects on bone turnover, microdamage, and mechanical properties: what we think we know and what we know that we don’t know. Bone 49(1):56–65. ISSN 8756-3282. Available at: http://www.sciencedirect.com/science/article/pii/S8756328210018636

    Article  CAS  PubMed  Google Scholar 

  19. Boskey AL, Marks SC. Mineral and matrix alterations in the bones of incisors-absent (ia/ia) osteopetrotic rats. Calcified Tissue International 37(3):287–292. 01 May 1985. ISSN 0171-967X. Available at: http://dx.doi.org/10.1007/BF02554876

    Article  CAS  PubMed  Google Scholar 

  20. Cundy T, Reid IR (2012) Paget’s disease of bone. Clin Biochem 45(1–2):43–48. ISSN 0009-9120. Available at: http://www.sciencedirect.com/science/article/pii/S0009912011026890

  21. Dilworth L et al (2008 Bone and faecal minerals and scanning electron microscopic assessments of femur in rats fed phytic acid extract from sweet potato (Ipomoea batatas). BioMetals 21(2):133–141. 01 Apr 2008. ISSN 0966-0844. Available at: http://dx.doi.org/10.1007/s10534-007-9101-z

  22. Fratzl P et al (1996) Effects of sodium fluoride and alendronate on the bone mineral in minipigs: A small-angle X-ray scattering and backscattered electron imaging study. J Bone Miner Res 11(2):248–253. ISSN 1523-4681. Available at: http://dx.doi.org/10.1002/jbmr.5650110214

    Article  Google Scholar 

  23. Leventouri T (2006) Synthetic and biological hydroxyapatites: crystal structure questions. Biomaterials 27(18):3339–3342. ISSN 0142-9612. Available at: http://www.sciencedirect.com/science/article/pii/S0142961206001761

    Article  CAS  PubMed  Google Scholar 

  24. Marcus R et al (2009) Fundamentals of osteoporosis, 1ª edn. Elsevier, UK. eBook ISBN: 9780123751089

    Google Scholar 

  25. Noor A et al (2011) Assessment of microarchitecture and crystal structure of hydroxyapatite in osteoporosis. Univ Med 31(1)

    Google Scholar 

  26. Ou-Yang H et al (2001) Infrared microscopic imaging of bone: spatial distribution of CO32−. J Bone Miner Res 16(5):893–900. ISSN 1523-4681. Available at: http://dx.doi.org/10.1359/jbmr.2001.16.5.893

    Article  CAS  PubMed  Google Scholar 

  27. Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21(2):195–214. 01 Feb 2010. ISSN 0937-941X. Available at: http://dx.doi.org/10.1007/s00198-009-1066-z

    Article  CAS  Google Scholar 

  28. Shen Y et al (2009) Postmenopausal women with osteoarthritis and osteoporosis show different ultrastructural characteristics of trabecular bone of the femoral head. BMC Musculoskelet Disord 10(1):35. ISSN 1471–2474. Available at: http://www.biomedcentral.com/1471-2474/10/35

  29. Ginebra M-P et al (1999) Modeling of the hydrolysis of α-tricalcium phosphate. J Am Ceram Soc 82(10):2808–2812. ISSN 1551-2916. Available at: http://dx.doi.org/10.1111/j.1151-2916.1999.tb02160.x

    Article  Google Scholar 

  30. Klein CPAT et al (1990) Studies of the solubility of different calcium phosphate ceramic particles in vitro. Biomaterials 11(7):509–512. ISSN 0142-9612. Available at: http://www.sciencedirect.com/science/article/pii/014296129090067Z

    Article  CAS  PubMed  Google Scholar 

  31. Barrere F et al (2002) Influence of ionic strength and carbonate on the Ca-P coating formation from SBF × 5 solution. Biomaterials 23(9):1921–1930. ISSN 0142-9612. Available at: http://www.sciencedirect.com/science/article/pii/S0142961201003180

    Article  CAS  PubMed  Google Scholar 

  32. Raynaud S et al (2002) Calcium phosphate apatite with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 23(4):1065–1072. ISSN 0142-9612. Available at: http://www.sciencedirect.com/science/article/pii/S0142961201002186

    Article  CAS  PubMed  Google Scholar 

  33. Dekker RJ et al (2005) Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs. Biomaterials 26(25):5231–5239. ISSN 0142-9612. Available at: http://www.sciencedirect.com/science/article/pii/S0142961205001079

    Article  CAS  PubMed  Google Scholar 

  34. Hill RJ, Howard CJ (1987) Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J Appl Crystallogr 20(6):467–474. ISSN 0021-8898. Available at: http://dx.doi.org/10.1107/S0021889887086199

  35. Langford JI, Louer D, Scardi P (2000) Effect of a crystallite size distribution on X-ray diffraction line profiles and whole-powder-pattern fitting. J Appl Crystallogr 33(3):964–974. ISSN 0021-8898. Available at: http://dx.doi.org/10.1107/S002188980000460X

    Article  CAS  Google Scholar 

  36. Pecharsky VK (2009) Fundamentals of powder diffraction and structural characterization of materials, 2nd edn. Springer, Berlin, 744 pp. ISBN 978-0-387-09579-0

    Google Scholar 

  37. Rietveld H (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22(1):151–152. 01 Oct 1967. ISSN 0365-110X. Available at: http://dx.doi.org/10.1107/S0365110X67000234

    Article  CAS  Google Scholar 

  38. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(2):65–71. 06 Feb 1969. ISSN 0021-8898. Available at: http://dx.doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  39. Young RA, Mackie PE, Von Dreele RB (1977) Application of the pattern-fitting structure-refinement method of X-ray powder diffractometer patterns. J Appl Crystallogr 10(4):262–269. 08 Jan 1977. ISSN 0021-8898. Available at: http://dx.doi.org/10.1107/S0021889877013466

    Article  Google Scholar 

  40. Enzo S et al (1988) A profile-fitting procedure for analysis of broadened X-ray diffraction peaks. I. Methodology. J Appl Crystallogr 21(5):536–542. 10 Jan 1988. ISSN 0021-8898. Available at: http://dx.doi.org/10.1107/S0021889888006612

    Article  Google Scholar 

  41. Louer D, Langford JI (1988) Peak shape and resolution in conventional diffractometry with monochromatic X-rays. J Appl Crystallogr 21(5):430–437. 10 Jan 1988. ISSN 0021-8898. Available at: http://dx.doi.org/10.1107/S002188988800411X

    Article  Google Scholar 

  42. Madsen IC, Hill RJ (1988) Effect of divergence and receiving slit dimensions on peak profile parameters in Rietveld analysis of X-ray diffractometer data. J Appl Crystallogr 21(5):398–405. 10 Jan 1988. ISSN 0021-8898. Available at: http://dx.doi.org/10.1107/S0021889888003474

    Article  CAS  Google Scholar 

  43. Press WH, Teukolsky SA (2007) Numerical recipes in C++, 3rd edn. The Art of Scientific Programming Cambridge University Press, 1256 pp. ISBN: 978-0521880688

    Google Scholar 

  44. Teixeira EM (2013) Particle size refinement and microstrain polycrystalline samples by X-ray diffraction profiles using kinetic and dynamic theories. 46 (Physics Bachelor). Department of Physics, Federal University of Ceará, Fortaleza

    Google Scholar 

  45. Caglioti G, Paoletti A, Ricci FP (1958) Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl Instrum 3(4):223–228. ISSN 0369-643X. Available at: http://www.sciencedirect.com/science/article/pii/0369643X5890029X

    Article  CAS  Google Scholar 

  46. Dehlinger U, Kochendörfer A (1939) Linienverbreiterung von verformten Metallen. Zeitschrift Für Kristallographie. Cryst Mater 101(1–6). https://doi.org/10.1524/zkri.1939.101.1.134

  47. Azàroff LV (1968) Elements of x-ray crystallography. McGraw-Hill Book Company, New York

    Google Scholar 

  48. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica 1(1):22–31. ISSN 0001-6160. Available at: http://www.sciencedirect.com/science/article/pii/0001616053900066

    Article  CAS  Google Scholar 

  49. Aguado F et al (1996) Behavior of bone mass measurements—dual energy X-ray absorptiometry total body bone mineral content, ultrasound bone velocity, and computed metacarpal radiogrammetry, with age, gonadal status, and weight in healthy women. Investigative Radiol 31(4):218-222. ISSN 0020-9996. Available at: Go to ISI: WOS:A1996UE33000006

    Article  CAS  PubMed  Google Scholar 

  50. Faulkner KG et al (1994) Quantitative ultrasound of the heel—correlation with densitometric measurements at different skeletal sites. Osteoporos Int 4(1):42–47. ISSN 0937-941X. Available at: Go to ISI: WOS:A1994MT96000008

    Article  CAS  PubMed  Google Scholar 

  51. Hans D et al (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348(9026):511–514. 24 Aug 1996. ISSN 0140-6736. Available at:  Go to ISI : WOS:A1996VD42700011

    Article  CAS  Google Scholar 

  52. Kwok T et al (2012) Predictive values of calcaneal quantitative ultrasound and dual energy X-ray absorptiometry for non-vertebral fracture in older men: results from the MrOS study (Hong Kong). Osteoporos Int 23(3):1001–1006. ISSN 0937-941X. Available at: Go to ISI: WOS:000300251200023

    Article  PubMed  Google Scholar 

  53. Ross P et al (1995) Predicting vertebral deformity using bone densitometry at various skeletal sites and calcaneus ultrasound. Bone 16(3):325–332. ISSN 8756-3282. Available at: Go to ISI: WOS:A1995RB63800007

    Article  CAS  PubMed  Google Scholar 

  54. Salamone LM et al (1994) Comparison of broad-band ultrasound attenuation to single x-ray absorptiometry measurements at the calcaneus in postmenopausal women. Calcif Tissue Int 54(2):87–90. ISSN 0171-967X. Available at: Go to ISI: WOS:A1994MT40200002

    Article  CAS  PubMed  Google Scholar 

  55. Turner CH et al (1995) Calcaneal ultrasonic measurements discriminate hip fracture independently of bone mass. Osteoporos Int 5(2):130–135. ISSN 0937-941X. Available at: Go to ISI: WOS:A1995QM68000010

    Article  CAS  PubMed  Google Scholar 

  56. Waud CE, Lew R, Baran DT (1992) The relationship between ultrasound and densitometric measurements of bone mass at the calcaneus in women. Calcif Tissue Int 51(6):415–418. ISSN 0171-967X. Available at: Go to ISI: WOS:A1992JY74200004

    Article  CAS  PubMed  Google Scholar 

  57. Yeap SS et al (1998) The relationship between bone mineral density and ultrasound in postmenopausal and osteoporotic women. Osteoporos Int 8(2):141–146. ISSN 0937-941X. Available at: Go to ISI: WOS:000078768900008

    Article  CAS  PubMed  Google Scholar 

  58. Cortet B et al (2004) Does quantitative ultrasound of bone reflect more bone mineral density than bone microarchitecture? Calcif Tissue Int 74(1):60–67. 01 Jan 2004. ISSN 0171-967X. Available at: http://dx.doi.org/10.1007/s00223-002-2113-3

  59. Webb S (2012) The physics of medical imaging, 2 edn. CRC Press is an imprint of Taylor & Francis Group, Boca Raton. ISBN-13: 978-1-4665-6895-2 (eBook—PDF)

    Google Scholar 

  60. Njeh CF et al (1999) Quantitative ultrasound assessment of osteoporosis and bone status. London Martin Dunitz. ISBN: 1-85317-679-6, 420 pp. doi: https://doi.org/10.1016/S0301-5629(00)00280-5

    Article  Google Scholar 

  61. Fountos G et al (1998) The effects of inflammation-mediated osteoporosis (IMO) on the skeletal Ca/P ratio and on the structure of rabbit bone and skin collagen. Appl Radiat Isotopes 49(5–6):657–659. ISSN 0969-8043. Available at: http://www.biomedsearch.com/nih/effects-inflammation-mediated-osteoporosis-IMO/9569570.html

    Article  CAS  PubMed  Google Scholar 

  62. Kourkoumelis N, Balatsoukas I, Tzaphlidou M (2012) Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by Auger and energy dispersive X-ray spectroscopy. J Biol Phys 38(2):279–291. ISSN 0092-0606. Available at: http://dx.doi.org/10.1007/s10867-011-9247-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Costa ACFM et al (2009) Hydroxyapatite: collection, characterization and applications. Eletr J Mater Proces 4(3):10

    Google Scholar 

  64. Garnet LP, Hiatt JL (2003) Treaty of histology. 2. Rio de Janeiro: Guanabara Koogan. ISBN: 8527708132

    Google Scholar 

  65. Junqueira LC, Carneiro J (2008) In: de Janeiro R (ed) Basic histology, 11th edn. Guanabara Koogan. ISBN: 9788527731812

    Google Scholar 

  66. Li B, Aspden RM (1997) Mechanical and material properties of the subchondral bone plate from the femoral head of patients with osteoarthritis or osteoporosis. Ann Rheum Dis 56(4):247–254, 1997. Available at: http://ard.bmj.com/content/56/4/247.abstract

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moran P et al (2007) Preliminary work on the development of a novel detection method for osteoporosis. J Mater Sci Mater Med 18(6):969–974. 01 Jun 2007. ISSN 0957-4530. Available at: http://dx.doi.org/10.1007/s10856-006-0037-6

    CAS  PubMed  Google Scholar 

  68. Boivin G et al (2008) The role of mineralization and organic matrix in the microhardness of bone tissue from controls and osteoporotic patients. Bone 43(3):532–538. ISSN 8756-3282. Available at: http://www.sciencedirect.com/science/article/pii/S8756328208002834

    Article  CAS  PubMed  Google Scholar 

  69. Ferrante M (1996) Material selection. EDUFSCar, São Carlos

    Google Scholar 

  70. Rollo JMDA et al (2015) Assessment of trabecular bones microarchitectures and crystal structure of hydroxyapatite in bone osteoporosis with application of the rietveld method. Procedia Eng 110:8–14. ISSN 1877-7058. https://doi.org/10.1016/j.proeng.2015.07.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. D. A. Rollo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rollo, J.M.D.A., Boffa, R.S., Cesar, R., Erbereli, R., Schwab, D.C., Leivas, T.P. (2020). Bone Quality Assessment at the Atomic Scale. In: Belinha, J., Manzanares-Céspedes, MC., Completo, A. (eds) The Computational Mechanics of Bone Tissue. Lecture Notes in Computational Vision and Biomechanics, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-37541-6_2

Download citation

Publish with us

Policies and ethics