Skip to main content

Exploiting Arbuscular Mycorrhizal Fungi-Rhizobia-Legume Symbiosis to Increase Smallholder Farmers’ Crop Production and Resilience Under a Changing Climate

  • Chapter
  • First Online:
Climate Impacts on Agricultural and Natural Resource Sustainability in Africa

Abstract

Beneficial soil microbiota, such as arbuscular mycorrhizal fungi (AMF) and rhizobia, provide essential agroecosystem services in smallholder farming systems. Such microorganisms have great potential to promote crop production and resilience under a changing climate in sub-Saharan Africa. However, their function is affected by agronomic management practices, crop genotype and soil quality, among other factors. In this work, we sought to determine the effect of soil quality and crop genotype on nodulation, percentage mycorrhizal colonization and growth of maize and cowpea crops. Soil samples were obtained from ten smallholder farms with known management history in Embu and Kitui counties of Kenya and analysed for physicochemical parameters. Greenhouse bioassays were then carried out, where the samples were put in sterilized pots in four replicates and maintained in a completely randomized design. Four cowpea and maize genotypes (locally grown landraces and recommended genotypes from Kenya Agricultural and Livestock Research Organization) were grown in pots for 40 days. After harvesting, nodulation in the case of cowpea, shoot dry weights and mycorrhizal root colonization were determined. Remarkably, cowpea genotypes differed significantly (p < 0.0001) in nodule number. The locally cultivated landrace (C2) recorded the lowest nodulation with 30.4 nodules plant−1, compared to the open pollinated varieties (OPVs): C1, 39.15; C3, 43.70; and C4, 40.6 nodules plant−1. Among the maize genotypes, the locally cultivated landrace (M3) recorded a significantly (p = 0.008) higher percentage of mycorrhizal root colonization (68.9%) compared to the OPVs: M1 58.1% and M2 65.3%, while the hybrid (M4) had the lowest root colonization of 57.8%. Soil characteristics influenced nodulation and mycorrhizal colonization, where soil P was positively correlated to cowpea nodulation. Soil organic matter, nitrogen, pH and calcium positively correlated with AMF maize root colonization. Our results demonstrate the strong effect of soil quality and crop genotype on AMF-rhizobia-legume symbiosis, which affects overall crop growth and production. These factors should therefore be critically considered during the development of efficient low-cost inocula for enhanced smallholder farmers’ crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agoyi EE, Odong TL, Tumuhairwe JB, Chigeza G, Diers BW, Tukamuhabwa P (2017) Genotype by environment effects on promiscuous nodulation in soybean (Glycine max L. Merrill). Agric Food Secur 6(1):29. https://doi.org/10.1186/s40066-017-0107-7

    Article  Google Scholar 

  • Antunes PM, Goss MJ (2005) Communication in the tripartite symbiosis formed by arbuscular mycorrhizal fungi, rhizobia and legume plants: a review. In: Zobel R, Wright S (eds), Roots and soil management: interactions between roots and the soil. Agron Monogr 48. ASA, CSSA and SSSA, Madison, WI, pp 199–222

    Google Scholar 

  • Aquino S, Scabora MH, Antonio J, Maria S, Maltoni KL, Maria A, Cassiolato R (2015) Mycorrhizal colonization and diversity and corn genotype yield in soils of the Cerrado region, Brazil. Colonização e diversidade micorrízica e produtividade de genótipos de milho, em solo de Cerrado:4107–4118. https://doi.org/10.5433/1679-0359.2015v36n6Supl2p4107

  • Argaw A (2013) Evaluation of symbiotic effectiveness and size of resident Rhizobium leguminosarum var. viciae nodulating lentil (Lens culinaris medic) in some Ethiopian soils. Arch Agron Soil Sci 59(7):929–945. https://doi.org/10.1080/03650340.2012.690144

    Article  Google Scholar 

  • Argaw A, Muleta D (2018) Effect of genotypes-Rhizobium-environment interaction on nodulation and productivity of common bean (Phaseolus vulgaris L.) in Eastern Ethiopia. Environ Syst Res 6(1):14. https://doi.org/10.1186/s40068-017-0091-8

    Article  Google Scholar 

  • Bargaz A, Faghire M, Abdi N, Farissi M, Sifi B, Drevon J, Ghoulam C (2012) Low soil phosphorus availability increases acid phosphatases activities and affects P partitioning in nodules, seeds and rhizosphere of Phaseolus vulgaris. Agriculture 2:139–153. https://doi.org/10.3390/agriculture2020139

    Article  CAS  Google Scholar 

  • Battini F, Grønlund M, Agnolucci M, Giovannetti M, Jakobsen I (2017) Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria article. Sci Rep 7(1):1–11. https://doi.org/10.1038/s41598-017-04959-0

  • Berta G, Copetta A, Gamalero E, Bona E, Cesaro P, Scarafoni A, D’Agostino G (2013) Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth promoting pseudomonad in the field. Mycorrhiza 24(3):161–170. https://doi.org/10.1007/s00572-013-0523-x

    Article  Google Scholar 

  • Boon E, Zimmerman E, Lang BF, Hijri M, Cozzolino V, Di Meo V, Chen H (2013) Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability. PLoS One 129(3):40–44. https://doi.org/10.1016/j.gexplo.2013.02.006.

    Article  Google Scholar 

  • Castellane L, Maria A, Bueno M (2015) Characterization of exopolysaccharides produced by rhizobia species. Rev Bras Ciênc Solo 39(6):1566–1575. https://doi.org/10.1590/01000683rbcs20150084

    Article  Google Scholar 

  • Cerozi S, Fitzsimmons K (2016) The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. Bioresour Technol 219:778–781. https://doi.org/10.1016/j.biortech.2016.08.079

    Article  CAS  Google Scholar 

  • Chen M, Graedel TE (2016) A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob Environ Chang 36:139–152. https://doi.org/10.1016/j.gloenvcha.2015.12.005

    Article  Google Scholar 

  • Chu Q, Wang X, Yang Y, Chen F, Zhang F, Feng G (2013) Mycorrhizal responsiveness of maize (Zea mays L.) genotypes as related to releasing date and available P content in soil. Mycorrhiza 23(6):497–505. https://doi.org/10.1007/s00572-013-0492-0

    Article  CAS  Google Scholar 

  • Clair SBS, Lynch JP (2010) The opening of Pandora’s Box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335:101–115. https://doi.org/10.1007/s11104-010-0328-z

    Article  CAS  Google Scholar 

  • Cozzolino V, Di Meo V, Piccolo A (2013) Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability. J Geochem Explor 129:40–44. https://doi.org/10.1016/j.gexplo.2013.02.006

    Article  CAS  Google Scholar 

  • Erbas BC (2017) In the presence of climate change, the use of fertilizers and the effect of income on agricultural emissions. Sustainability 9(11):1–17. https://doi.org/10.3390/su9111989.

    Article  Google Scholar 

  • Garg N, Geetanjali (2007) Symbiotic nitrogen fixation in legume nodules: process and signaling. A review. Agron Sustain Dev 27(1):59–68. https://doi.org/10.1051/agro.2006030

    Article  CAS  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20(8):519–530. https://doi.org/10.1007/s00572-010-0333-3

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring arbuscular mycorrhiza infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gomes EA, Oliveira CA, Lana UGP, Noda RW, Marriel IE, De Souza FA, Lagoas S (2015) Arbuscular mycorrhizal fungal communities in the roots of maize lines contrasting for Al tolerance grown in limed and non-limed Brazilian Oxisoil. J Microbiol Biotechnol 25(7):978–987

    Article  CAS  Google Scholar 

  • Jida M, Assefa F (2011) Phenotypic and plant growth promoting characteristics of Rhizobium leguminosarum bv. viciae from lentil growing areas of Ethiopia. Afr J Biotechnol 5(24):4133–4142. https://doi.org/10.5897/AJMR11.400.

    Article  Google Scholar 

  • Jordan-meille AL, Pellerin S (2018) Shoot and root growth of hydroponic maize (Zea mays L.) as influenced by K deficiency. Plant Soil 304(1):157–168. https://www.jstor.org/stable/42951816

    Google Scholar 

  • Leghari SJ, Wahocho NA, Laghari GM, Hafeez Laghari A, Mustafa Bhabhan G, Hussain Talpur K, Bhutto TA, Wahocho SA, Lashari AA (2016) Role of nitrogen for plant growth and development: a review. Adv Environ Biol 10(9):2019–2219

    Google Scholar 

  • Lindstrom K, Murwira M, Willems A, Altier N (2010) The biodiversity of beneficial microbe-host mutualism: the case of rhizobia. Res Microbiol 161:453–463. https://doi.org/10.1016/j.resmic.2010.05.005

    Article  Google Scholar 

  • Liu W, Zhang Y, Jiang S, Deng Y, Christie P, Murray PJ, Zhang J (2016) Arbuscular mycorrhizal fungi in soil and roots respond differently to phosphorus inputs in an intensively managed calcareous agricultural soil. Sci Rep 6(1):24902. https://doi.org/10.1038/srep24902

    Article  CAS  Google Scholar 

  • Motaroki EM, Njeru EM, Koskey G, Maingi J (2018) Rhizobial inoculation methods affect the nodulation and plant growth traits of host plant genotypes: a case study of Common bean Phaseolus vulgaris L. germplasms cultivated by smallholder farmers in Eastern Kenya. Advances in Agricultural. Science 6(3):77–94

    Google Scholar 

  • Mothapo NV, Grossman JM, Sooksa-nguan T, Maul J, Bräuer SL, Shi W (2013) Cropping history affects nodulation and symbiotic efficiency of distinct hairy vetch (Vicia villosa Roth.) genotypes with resident soil rhizobia. Biol Fertil Soils 49(7):871–879. https://doi.org/10.1007/s00374-013-0781-y

    Article  Google Scholar 

  • Mwendwa P, Giliba RA (2012) Climate change impacts and adaptation strategies in Kenya. Chin J Popul Resour and Environ 10(4):22–29. https://doi.org/10.1080/10042857.2012.10685104

    Article  Google Scholar 

  • Njeru EM (2018) Exploiting diversity to promote arbuscular mycorrhizal symbiosis and crop productivity in organic farming systems. AIMS Agric Food 3(3):280–294

    Article  Google Scholar 

  • Njeru E, Avio L, Sbrana C, Turrini A, Bocci G, Bàrberi P, Giovannetti M (2013) First evidence for a major cover crop effect on arbuscular mycorrhizal fungi and organic maize growth. Agron Sustain Dev 34(4):841–848. https://doi.org/10.1007/s13593-013-0197-y

    Article  Google Scholar 

  • Okalebo RJ, Gathua KW, Woomer PL (2002) Laboratory methods of soil and plant analysis: a working manual, 2nd edn. TSBF-CIAT and Sacred Africa, Nairobi, Kenya

    Google Scholar 

  • Oliveira JP, Galli-Terasawa LV, Enke CG, Cordeiro VK, Armstrong LCT, Hungria M (2010) Genetic diversity of rhizobia in a Brazilian oxisol nodulating Mesoamerican and Andean genotypes of common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol 27(3):643–650

    Article  Google Scholar 

  • Ondieki DK, Nyaboga EN, Wagacha JM, Mwaura FB (2017) Morphological and genetic diversity of rhizobia nodulating cowpea (Vigna unguiculata L.) from agricultural soils of lower Eastern Kenya. Int J Microbiol 2017(8684921):9. https://doi.org/10.1155/2017/8684921

    Article  CAS  Google Scholar 

  • Onono PA, Wawire NWH, Ombuki C (2013) The response of maize production in Kenya to economic incentives. Int J Dev Sustain 2(2):530–543

    Google Scholar 

  • Oruru MB, Njeru EM (2016) Upscaling arbuscular mycorrhizal symbiosis and related agroecosystems services in smallholder farming systems. Biomed Res Int 2016:1–12. https://doi.org/10.1155/2016/4376240

    Article  CAS  Google Scholar 

  • Oruru MB, Njeru EM, Pasquet R, Runo S (2018) Response of a wild-type and modern cowpea cultivars to arbuscular mycorrhizal fungi inoculation in sterilized and non-sterilized soil. J Plant Nutr 48(1):90–101. https://doi.org/10.1080/01904167.2017.1381728

    Article  CAS  Google Scholar 

  • Otieno PE, Muthomi JW, Chemining’wa GN, Nderitu JH (2009) Effect of rhizobia inoculation, farmyard manure, nitrogen fertilizer on nodulation and yield of food grain legumes. J Biol Sci 9:326–332

    Article  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799. https://doi.org/10.1038/nrmicro3109

    Article  CAS  Google Scholar 

  • Razaq M, Zhang P, Shen H, Salahuddin (2017) Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLOS ONE 12(2):e0171321. https://doi.org/10.1371/journal.pone.0171321

    Article  CAS  Google Scholar 

  • Rondon MA, Lehmann J, Ramírez J, Hurtado M (2006) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43(6):699–708. https://doi.org/10.1007/s00374-006-0152-z

    Article  Google Scholar 

  • Slattery J, Pearce P (2002) Development of elite inoculant Rhizobium strains in South Eastern Australia. In: Herridge D (ed) Inoculants and Nitrogen Fixation of Legumes in Vietnam, ACIAR Proceedings, pp 86–94

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhiza Symbioses. Elsevier, London

    Google Scholar 

  • Ulzen J, Abaidoo RC, Mensah NE, Masso C, AbdelGadir AH (2016) Bradyrhizobium inoculants enhance grain yields of soybean and cowpea in Northern Ghana. Front Plant Sci 7:1770. https://doi.org/10.3389/fpls.2016.01770

    Article  Google Scholar 

  • van Tuinen D, Bouffaud M, Bernaud E, Colombet A, Tuinen D, Van Wipf D, Redecker D (2016) Regional-scale analysis of arbuscular mycorrhizal fungi: the case of Burgundy vineyards, International Molecular Mycorrhiza Meeting, Sept 2015, Cambridge, UK

    Google Scholar 

  • Wambugu PW, Mathenge PW, Auma EO, van Rheenen HA, Wambugu PW, Mathenge PW, van Rheenen HA (2012) Constraints to on-farm maize (Zea mays L.) seed production in Western Kenya: plant growth and yield. ISRN Agron 2012:1–7. https://doi.org/10.5402/2012/153412

    Article  Google Scholar 

  • Yang Y, Liang Y, Han X, Chiu T, Ghosh A, Chen H, Tang M (2016) The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Sci Rep 6(February):1–14. https://doi.org/10.1038/srep20469

Download references

Acknowledgements

This work was funded by The World Academy of Science (TWAS) and Kenyatta University. The authors wish to thank the farmers at Machang’a and Kitui West for their contributions and assistance during soil sampling.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Njeru, E.M. et al. (2020). Exploiting Arbuscular Mycorrhizal Fungi-Rhizobia-Legume Symbiosis to Increase Smallholder Farmers’ Crop Production and Resilience Under a Changing Climate. In: Singh, B., Safalaoh, A., Amuri, N., Eik, L., Sitaula, B., Lal, R. (eds) Climate Impacts on Agricultural and Natural Resource Sustainability in Africa. Springer, Cham. https://doi.org/10.1007/978-3-030-37537-9_27

Download citation

Publish with us

Policies and ethics