Skip to main content

Investigations of Defects in Inverted Organic Solar Cells

  • Conference paper
  • First Online:
Advances in Engineering Research and Application (ICERA 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 104))

Included in the following conference series:

  • 938 Accesses

Abstract

The utilization of inverted structures in organic solar cells (OSCs) has been demonstrated to provide higher efficiency and stability as compared to standard structure devices. The improvement of the cell performance is thought to be linked to the electron and hole transporting layers (ETL and HTL), which also play key role in preventing the cell from extrinsic degradation. However, from the defect point of view, the presence of these layers can introduce new sources of charge carrier trapping, and therefore can impact on the long term stability and electrical property of the solar cells. In this work, we report results on investigations of defects in inverted solar cells using blends of poly(hexylthiophene) (P3HT) and 6,6-phenyl-C61-butyric acid methyl ester (PCBM) as the absorbing layer, while zinc oxide (ZnO) was used as the ETL. The defects in devices were determined by the charge based deep level spectroscopy (Q-DLTS). The results indicated new defect states in inverted OSCs as compared to the standard P3HT:PCBM device. Defects of energy in the range of 10–470 meV have been determined by the charge peak corresponding to the high relaxation time domain, assigning to the heterojunction bulk of the cells. Additional traps observed through the onset of a charge peak in the low relaxation time domain have a low energy level and are assigned to interface defects. These defects are supposed to originate from the zinc oxide contact and may affect the stability of the solar cells in operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lattante, S.: Electron and hole transport layers: their use in inverted bulk heterojunction polymer solar cells. Electronics 3, 132–164 (2014)

    Article  Google Scholar 

  2. Espinosa, N., Dam, H.F., Tanenbaum, D.M., Andreasen, J.W., Jørgensen, M., Krebs, F.C.: Roll-to-roll processing of inverted polymer solar cells using hydrated vanadium (V) oxide as a PEDOT:PSS replacement. Materials 4, 169–182 (2011)

    Article  Google Scholar 

  3. Bovill, E., Scarratt, N., Griffin, J., Yi, H., Iraqi, A., Buckley, A.R., Kingsley, J.W., Lidzey, D.G.: The role of the hole-extraction layer in determining the operational stability of a poly carbazole:fullerene BHJ photovoltaic device. Appl. Phys. Lett. 106, 073301 (2005)

    Article  Google Scholar 

  4. Chen, W.C., Chen, P.Y., Yang, S.H.: Solution-processed hybrid light emitting and photovoltaic devices comprising zinc oxide nanorod arrays and tungsten trioxide layers. AIMS Mater. Sci. 4, 551–560 (2017)

    Article  Google Scholar 

  5. Nguyen, T.P., Renaud, C., Reisdorffer, F., Wang, L.: Degradation of PCBM:P3HT organic photovoltaic cells and structure changes as determined by defect investigation. J. Energy Photonics 2, 021013 (2012)

    Article  Google Scholar 

  6. Nguyen, T.P.: Defects in organic electronic devices. Phys. Status Solidi (a) 205, 162–166 (2008)

    Article  Google Scholar 

  7. Auret, F.D., Goodman, S.A., Legodi, M.J., Meyer, W.E., Look, D.C.: Electrical characterization of vapor-phase-grown single-crystal ZnO. Appl. Phys. Lett. 80, 1340–1342 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thien-Phap Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goilard, J., Xue, K., Renaud, C., Chen, P.Y., Yang, SH., Nguyen, TP. (2020). Investigations of Defects in Inverted Organic Solar Cells. In: Sattler, KU., Nguyen, D., Vu, N., Tien Long, B., Puta, H. (eds) Advances in Engineering Research and Application. ICERA 2019. Lecture Notes in Networks and Systems, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-030-37497-6_51

Download citation

Publish with us

Policies and ethics