Skip to main content

A Spatial Analysis Framework to Assess Responses of Agricultural Landscapes to Climates and Soils at Regional Scale

  • Chapter
  • First Online:
Landscape Modelling and Decision Support

Abstract

This chapter describes the structure, datasets and processing methods of a new spatial analysis framework to assess the response of agricultural landscapes to climates and soils. Georeferenced gridded information on climate (historical and climate change scenarios), soils, terrain and crop management are dynamically integrated by a process-based biophysical model within a high-performance computing environment. The framework is used as a research tool to quantify productivity and environmental aspects of agricultural systems. An application case study using New Zealand spatial datasets and silage maize cropping systems illustrates the current framework capability and highlights key areas for enhancement in future gridded modelling research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brown H, Huth N, Holzworth D (2018) Crop model improvement in APSIM: using wheat as a case study. Eur J Agron 100:141–150. https://doi.org/10.1016/j.eja.2018.02.002

    Article  Google Scholar 

  • Ewert F, Rötter RP, Bindi M, Webber H, Trnka M, Kersebaum KC, Olesen JE, van Ittersum, MK, Janssen S, Rivington M, Semenov MA, Wallach D, Porter JR, Stewart D, Verhagen J, Gaiser T, Palosuo T, Tao F, Nendel C, Roggero PP, Bartošová L, Asseng S (2015a) Crop modelling for integrated assessment of risk to food production from climate change. Environ Model Softw 287–303. http://dx.doi.org/10.1016/j.envsoft.2014.12.003

  • Ewert F, van Bussel L, Zhao G, Hoffmann H, Gaiser T, Specka X, Kurt-Christian K, Sosa C, Lewan E, Yeluripati J, Kuhnert M, Tao F, Roetter R, Constantin J, Raynal H, Wallach D, Teixeira EI, Grosz B, Bach M, Doro L, Roggero PP, Zhao Z, Wang E, Kiese R, Haas E, Eckersten H, Trombi G, Bindi M, Klein C, Biernath C, Heinlein F, Priesack E, Cammarano D, Asseng S, Elliott J, Glotter M, Basso B, Baigorria GA, Romero CC, Moriondo M (2015b) Uncertainties in scaling up crop models for large area climate change impact assessments. In: Rosenzweig C, Hillel D (eds) Handbook of climate change and agroecosystems: the agricultural model intercomparison and improvement project (AgMIP)

    Google Scholar 

  • Gaydon DS, Singh Balwinder, Wang E, Poulton PL, Ahmad B, Ahmed F, Akhter S, Ali I, Amarasingha R, Chaki AK, Chen C, Choudhury BU, Darai R, Das A, Hochman Z, Horan H, Hosang EY, Kumar PV, Khan ASMMR, Laing AM, Liu L, Malaviachichi MAPWK, Mohapatra KP, Muttaleb MA, Power B, Radanielson AM, Rai GS, Rashid MH, Rathanayake WMUK, Sarker MMR, Sena DR, Shamim M, Subash N, Suriadi A, Suriyagoda LDB, Wang G, Wang J, Yadav RK, Roth CH (2017) Evaluation of the APSIM model in cropping systems of Asia. Field Crops Res 204:52–75. https://doi.org/10.1016/j.fcr.2016.12.015

    Article  Google Scholar 

  • Grosz B, Dechow R, Gebbert S, Hoffmann H, Zhao G, Constantin J, Raynal H, Wallach D, Coucheney E, Lewan E, Eckersten H, Specka X, Kersebaum K-C, Nendel C, Kuhnert M, Yeluripati J, Haas E, Teixeira E, Bindi M, Trombi G, Moriondo M, Doro L, Roggero PP, Zhao Z, Wang E, Tao F, Rötter R, Kassie B, Cammarano D, Asseng S, Weihermüller L, Siebert S, Gaiser T, Ewert F (2017) The implication of input data aggregation on up-scaling soil organic carbon changes. Environ Model Softw 96. https://doi.org/10.1016/j.envsoft.2017.06.046

  • Hoffmann H, Zhao G, Specka X, Nendel C, Kersebaum KC, Sosa C, Lewan E, Eckersten H, Yeluripati J, Kuhnert M, Tao F, Rötter R (2014) Effects of climate input data aggregation on modelling regional crop yields. In: FACCE MACSUR mid-term scientific conference, April 1–3 (+ 4), 2014, University of Sassari, Sardinia, Italy

    Google Scholar 

  • Holzworth D, Huth NI, Fainges J, Brown H, Zurcher E, Cichota R, Verrall S, Herrmann NI, Zheng B, Snow V (2018) APSIM next generation: overcoming challenges in modernising a farming systems model. Environ Model Softw 103:43–51. https://doi.org/10.1016/j.envsoft.2018.02.002

    Article  Google Scholar 

  • Holzworth DP, Huth NI, deVoil PG, Zurcher EJ, Herrmann NI, McLean G, Chenu K, van Oosterom EJ, Snow V, Murphy C, Moore AD, Brown H, Whish JPM, Verrall S, Fainges J, Bell LW, Peake AS, Poulton PL, Hochman Z, Thorburn PJ, Gaydon DS, Dalgliesh NP, Rodriguez D, Cox H, Chapman S, Doherty A, Teixeira E, Sharp J, Cichota R, Vogeler I, Li FY, Wang E, Hammer GL, Robertson MJ, Dimes JP, Whitbread AM, Hunt J, van Rees H, McClelland T, Carberry PS, Hargreaves JNG, MacLeod N, McDonald C, Harsdorf J, Wedgwood S, Keating BA (2014) APSIM—evolution towards a new generation of agricultural systems simulation. Environ Model Softw 62. https://doi.org/10.1016/j.env-soft.2014.07.009

  • Khaembah EN, Brown HE, Zyskowski R, Chakwizira E, de Ruiter JM, Teixeira EI (2017) Development of a fodder beet potential yield model in the next generation APSIM. Agric Syst 15. https://doi.org/10.1016/j.agsy.2017.08.005

  • Lilburne L, Hewitt A, Webb TH, Carrick S (2004) S-map—a new soil database for New Zealand. Reg Inst Online Publ

    Google Scholar 

  • LRIS-Portal (2019) LRIS-Portal [WWW Document]. lris.scinfo.org.nz/data/. Accessed 15 Jan 2019

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213. https://doi.org/10.1007/s10584-011-0156-z

    Article  CAS  Google Scholar 

  • MFE (2018) No Title [WWW Document]. New Zealand’s Greenh. Gas Invent. http://www.mfe.govt.nz/climate-change/state-of-our-atmosphere-and-climate/new-zealands-greenhouse-gas-inventory. Accessed 2 Jan 2019

  • Müller C, Elliott J, Chryssanthacopoulos J, Arneth A, Balkovic J, Ciais P, Deryng D, Folberth C, Glotter M, Hoek S, Iizumi T, Izaurralde RC, Jones C, Khabarov N, Lawrence P, Liu W, Olin S, Pugh TAM, Ray DK, Reddy A, Rosenzweig C, Ruane AC, Sakurai G, Schmid E, Skalsky R, Song CX, Wang X, de Wit A, Yang H (2017) Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci Model Dev 10:1403–1422. https://doi.org/10.5194/gmd-10-1403-2017

    Article  Google Scholar 

  • NIWA (2019) No Title [WWW Document]. www.niwa.co.nz/climate/our-services/virtual-climate-stations. Accessed 15 Jan 2019

  • Probert ME, Dimes JP, Keating BA, Dalal RC, Strong WM (1998) APSIM’s water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems. Agric Syst 56:1–28. https://doi.org/10.1016/S0308-521X(97)00028-0

    Article  Google Scholar 

  • R-Shiny (2019) No Title [WWW Document], 15 Jan 2019

    Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rodríguez A, Ruiz-Ramos M, Palosuo T, Carter TR, Fronzek S, Lorite IJ, Ferrise R, Pirttioja N, Bindi M, Baranowski P, Buis S, Cammarano D, Chen Y, Dumont B, Ewert F, Gaiser T, Hlavinka P, Hoffmann H, Höhn JG, Jurecka F, Kersebaum KC, Krzyszczak J, Lana M, Mechiche-Alami A, Minet J, Montesino M, Nendel C, Porter JR, Ruget F, Semenov MA, Steinmetz Z, Stratonovitch P, Supit I, Tao F, Trnka M, de Wit A, Rötter RP (2019) Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations. Agric For Meteorol 264:351–362. https://doi.org/10.1016/j.agrformet.2018.09.018

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn P, Antle JM, Nelson GC, Porter C, Janssen S, Asseng S, Basso B, Ewert F, Wallach D, Baigorria G, Winter JM (2013) The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies. Agric For Meteorol 170:166–182. https://doi.org/10.1016/j.agrformet.2012.09.011

    Article  Google Scholar 

  • Rutledge D, Ausseil A-G, Baisden T, Bodeker G, Booker D, Cameron M, Collins D, Daigneault A, Fernandez, Frame B, Keller E, Kremser S, Kirschbaum M, Lewis J, Mullan B, Reisinger A. Sood A, Stuart S, Tait A, Teixeira E, Timar L, Zammit C (2017) Identifying feedbacks, understanding cumulative impacts and recognising limits: a national integrated assessment. Synthesis Report RA3. Climate changes, impacts and implications for New Zealand to 2100. MBIE contract C01X1225

    Google Scholar 

  • S-Map (2019) No Title [WWW Document]. smap.landcareresearch.co.nz/

  • Sood A (2015) Improved bias corrected and downscaled regional climate model data for climate impact studies: validation and assessment for New Zealand. Unpublished

    Google Scholar 

  • Stats-NZ (2017) No Title [WWW Document]. National accounts (industry production and investment) year end, Mar 2017. https://www.stats.govt.nz/information-releases/national-accounts-industry-production-and-investment-year-ended-march-2017. Accessed 2 Jan 2019

  • Tait A, Sood A, Mullan B, Stuart S, Bodeker G, Kremser S, Lewis J (2016) Updated climate change projections for New Zealand for use in impact studies. Synthesis Report RA1. Climate changes, impacts and implications (CCII) for New Zealand to 2100. MBIE contract C01X1225 18

    Google Scholar 

  • Teixeira EI, Zhao G, Ruiter JD, Brown H, Ausseil A-G, Meenken E, Ewert F (2016) The interactions between genotype, management and environment in regional crop modelling. Eur J Agron. https://doi.org/10.1016/j.eja.2016.05.005

  • Vanuytrecht E, Raes D, Willems P (2016) Regional and global climate projections increase mid-century yield variability and crop productivity in Belgium. Reg Environ Change 16:659–672. https://doi.org/10.1007/s10113-015-0773-6

    Article  Google Scholar 

  • Wallach D, Thorburn PJ (2017) Estimating uncertainty in crop model predictions: current situation and future prospects. Eur J Agron 88:A1–A7. https://doi.org/10.1016/j.eja.2017.06.001

    Article  Google Scholar 

  • Webb TH, Lilburne LR (2011) Criteria for defining the soil family and soil sibling. The fourth and fifth categories of the New Zealand soil classification. Landcare research science series, no 3, 2nd edn. http://digitallibrary.landcareresearch.co.nz/cdm/ref/collection/p20022co

  • Zhao G, Hoffmann H, Yeluripati J, Specka X, Nendel C, Coucheney E, Kuhnert M, Tao F, Constantin J, Raynal H, Teixeira E, Grosz B, Doro L, Kiese R, Eckersten H, Haas E, Cammarano D, Kassie B, Moriondo M, Trombi G, Bindi M, Biernath C, Heinlein F, Klein C, Priesack E, Lewan E, Kersebaum KC, Rötter R, Roggero PPPP, Wallach D, Asseng S, Siebert S, Gaiser T, Ewert F (2016) Evaluating the precision of eight spatial sampling schemes in estimating regional means of simulated yield for two crops. Environ Model Softw 80:100–112. https://doi.org/10.1016/j.envsoft.2016.02.022

    Article  Google Scholar 

Download references

Acknowledgements

This work was completed under Plant & Food Research’s Discovery Science project “Spatial modelling of crops under climate change” (DS17-19) and Sustainable Agro-Ecosystems (SAE) programme, both funded from the Strategic Science Investment Fund. Additional funding was provided as an output for the Suitability programme of the Our Land and Water and Deep South National Science Challenges (Ministry of Business, Innovation and Employment contracts C10X1507 and C01X1445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmar Teixeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teixeira, E. et al. (2020). A Spatial Analysis Framework to Assess Responses of Agricultural Landscapes to Climates and Soils at Regional Scale. In: Mirschel, W., Terleev, V., Wenkel, KO. (eds) Landscape Modelling and Decision Support. Innovations in Landscape Research. Springer, Cham. https://doi.org/10.1007/978-3-030-37421-1_25

Download citation

Publish with us

Policies and ethics