Skip to main content

Decentralized Incentive-Compatible and Sybil-Proof Transaction Advertisement

  • Conference paper
  • First Online:
Book cover Mathematical Research for Blockchain Economy

Abstract

In a blockchain network, transaction advertisement is the announcement of the new transactions to the participants (miners) who are responsible to validate them. Existing blockchain protocols lack an incentive-compatible advertisement process where a rational participant would gain from advertising a transaction. The deficiency can be solved by a Sybil-proof rewarding function which divides the transaction fee among the round leader and the nodes who advertise it. Up to now, there have been three rewarding function proposals, all of which require special constraints on the blockchain network model, e.g., tree-structured connections. In this work, we formulate the rewarding function and obtain the necessary conditions for Sybil-proofness and incentive-compatibility properties. To the best of our knowledge, we present the first rewarding function which is suitable for any blockchain network model. We introduce path length dependent rewarding for the nodes involved in the advertisement process, which helps us to overcome the impossibility results given in the previous works. Our rewarding function divides the transaction fee among the nodes who advertise it, the current round leader and the next round leader. In addition to these achievements, unlike previous proposals, our rewarding function provides resistance against the forking attacks where an adversary rejects a valid block and creates a fork to gain the transaction fees in the original block.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Spiegelman, A.: Solidus: an incentive-compatible cryptocurrency based on permissionless byzantine consensus. CoRR (2016). ArXiv:1612.02916

  2. Babaioff, M., Dobzinski, S., Oren, S., Zohar, A.: On bitcoin and red balloons. In: Faltings et al. [8], pp. 56–73. https://doi.org/10.1145/2229012.2229022

  3. Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability of bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 154–167. CCS ’16. ACM, New York, NY, USA (2016). https://doi.org/10.1145/2976749.2978408

  4. Drucker, F., Fleischer, L.: Simpler sybil-proof mechanisms for multi-level marketing. In: Faltings et al. [8], pp. 441–458. https://doi.org/10.1145/2229012.2229046

  5. Emek, Y., Karidi, R., Tennenholtz, M., Zohar, A.: Mechanisms for multi-level marketing. In: Shoham, Y., Chen, Y., Roughgarden, T. (eds.) Proceedings 12th ACM Conference on Electronic Commerce (EC-2011), San Jose, CA, USA, June 5–9, 2011, pp. 209–218. ACM (2011). https://doi.org/10.1145/1993574.1993606

  6. Ersoy, O., Ren, Z., Erkin, Z., Lagendijk, R.L.: Transaction propagation on permissionless blockchains: incentive and routing mechanisms. In: Crypto Valley Conference on Blockchain Technology, CVCBT 2018, Zug, Switzerland, June 20–22, 2018, pp. 20–30. IEEE (2018). https://doi.org/10.1109/CVCBT.2018.00008

  7. Eyal, I., Gencer, A.E., Sirer, E.G., van Renesse, R.: Bitcoin-NG: a scalable blockchain protocol. In: Argyraki, K.J., Isaacs, R. (eds.) 13th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2016, Santa Clara, CA, USA, March 16–18, 2016, pp. 45–59. USENIX Association (2016), https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eyal

  8. Faltings, B., Leyton-Brown, K., Ipeirotis, P. (eds.): ACM Conference on Electronic Commerce, EC ’12, Valencia, Spain, June 4–8, 2012. ACM (2012). http://dl.acm.org/citation.cfm?id=2229012

  9. Gencer, A.E., Basu, S., Eyal, I., van Renesse, R., Sirer, E.G.: Decentralization in bitcoin and ethereum networks. CoRR (2018). http://arxiv.org/abs/1801.03998

  10. Kaskaloglu, K.: Near zero bitcoin transaction fees cannot last forever. In: The International Conference on Digital Security and Forensics (DigitalSec2014), pp. 91–99. The Society of Digital Information and Wireless Communication (2014)

    Google Scholar 

  11. Kleinberg, J.M., Raghavan, P.: Query incentive networks. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23–25 October 2005, Pittsburgh, PA, USA, Proceedings, pp. 132–141. IEEE Computer Society (2005). https://doi.org/10.1109/SFCS.2005.63

  12. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of bitcoin mining, or bitcoin in the presence of adversaries. In: Proceedings of WEIS, vol. 2013 (2013)

    Google Scholar 

  13. Li, C., Yu, B., Sycara, K.P.: An incentive mechanism for message relaying in unstructured peer-to-peer systems. Electron. Commer. Res. Appl. 8(6), 315–326 (2009). https://doi.org/10.1016/j.elerap.2009.04.007

  14. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  15. Pass, R., Shi, E.: Fruitchains: a fair blockchain. In: Schiller, E.M., Schwarzmann, A.A. (eds.) Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July 25–27, 2017, pp. 315–324. ACM (2017). https://doi.org/10.1145/3087801.3087809

  16. Peters, G.W., Panayi, E.: Understanding modern banking ledgers through blockchain technologies: future of transaction processing and smart contracts on the internet of money. In: Banking Beyond Banks and Money, pp. 239–278. Springer (2016)

    Google Scholar 

  17. Sirer, E.G.: Bitcoin runs on altruism (2015). http://hackingdistributed.com/2015/12/22/bitcoin-runs-on-altruism/

  18. Sompolinsky, Y., Zohar, A.: Bitcoin’s underlying incentives. Commun. ACM 61(3), 46–53 (2018). https://doi.org/10.1145/3152481

  19. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oğuzhan Ersoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ersoy, O., Erkin, Z., Lagendijk, R.L. (2020). Decentralized Incentive-Compatible and Sybil-Proof Transaction Advertisement. In: Pardalos, P., Kotsireas, I., Guo, Y., Knottenbelt, W. (eds) Mathematical Research for Blockchain Economy. Springer Proceedings in Business and Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-37110-4_11

Download citation

Publish with us

Policies and ethics