Skip to main content

Overview on Elliptic Multiple Zeta Values

  • Conference paper
  • First Online:
Periods in Quantum Field Theory and Arithmetic (ICMAT-MZV 2014)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 314))

  • 608 Accesses

Abstract

We give an overview of some work on elliptic multiple zeta values. First defined by Enriquez as the coefficients of the elliptic KZB associator, elliptic multiple zeta values are also special values of multiple elliptic polylogarithms in the sense of Brown and Levin. Common to both approaches to elliptic multiple zeta values is their representation as iterated integrals on a once-punctured elliptic curve. Having compared the two approaches, we survey various recent results about the algebraic structure of elliptic multiple zeta values, as well as indicating their relation to iterated integrals of Eisenstein series, and to a special algebra of derivations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also Sect. 1.4.

  2. 2.

    Iterated integrals starting or ending with \(\omega ^{(1)}\) diverge, and need to be regularized, such that the shuffle product formula remains valid. See [22, 36] for details on this regularization procedure.

References

  1. Bannai, K., Kobayashi, S., Tsuji, T.: On the de Rham and p-adic realizations of the elliptic polylogarithm for CM elliptic curves. Ann. Sci. École. Norm. Sup. (4) 43(2), 185–234 (2010)

    Google Scholar 

  2. Baumard, S., Schneps, L.: On the derivation representation of the fundamental Lie algebra of mixed elliptic motives. Ann. Math. Qué. 41(1), 43–62 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bloch, S.J.: Higher regulators, algebraic K-theory, and zeta functions of elliptic curves. CRM Monograph Series, vol. 11. American Mathematical Society, Providence, RI (2000)

    Google Scholar 

  4. Broadhurst, D.J., Kreimer, D.: Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops. Phys. Lett. B 393(3–4), 403–412 (1997)

    Article  MathSciNet  Google Scholar 

  5. Broedel, J., Mafra, C.R., Matthes, N., Schlotterer, O.: Elliptic multiple zeta values and one-loop superstring amplitudes. J. High Energy Phys. 7, 112, front matter+41 pp 2015

    Google Scholar 

  6. Broedel, J., Matthes, N., Schlotterer, O.: Relations between elliptic multiple zeta values and a special derivation algebra. J. Phys. A 49(15), 155203, 49 pp (2016)

    Google Scholar 

  7. Broedel, J., Schlotterer, O., Stieberger, S.: Polylogarithms, multiple zeta values and superstring amplitudes. Fortschr. Phys. 61(9), 812–870 (2013)

    Article  MathSciNet  Google Scholar 

  8. Broedel, J., Schlotterer, O., Stieberger, S., Terasoma, T.: All order \(\alpha ^{\prime }\)-expansion of superstring trees from the Drinfeld associator. Phys. Rev. D 89(6), 066014 (2014)

    Article  Google Scholar 

  9. Brown, F.: Mixed Tate motives over \({\mathbb{Z}}\). Ann. of Math. (2) 175(2), 949–976 (2012)

    Google Scholar 

  10. Brown, F.: Iterated Integrals in Quantum Field Theory. Geometric and Topological Methods for Quantum Field Theory, pp. 188–240. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  11. Brown, F.: Depth-graded motivic multiple zeta values. arXiv:1301.3053

  12. Brown, F.: Multiple modular values and the relative completion of the fundamental group of \({\mathscr {M}{}_{1,1}}\). arXiv:1407.5167v3

  13. Brown, F.: Zeta elements in depth \(3\) and the fundamental Lie algebra of the infinitesimal Tate curve. Forum Math. Sigma, 5:e1(56) (2017)

    Google Scholar 

  14. Brown, F.: Anatomy of an associator. arXiv:1709.02765

  15. Brown, F., Levin, A.: Multiple elliptic polylogarithms. arXiv:1110.6917

  16. Calaque, D., Enriquez, B., Etingof, P.: Universal KZB equations: the elliptic case. In: Yu. I. (ed.) Manin Algebra, arithmetic, and geometry: in honor of Vol. I, volume 269 of Progr. Math., pages 165–266. Birkhäuser Boston, Inc., Boston, MA (2009)

    Google Scholar 

  17. Chen, K.T.: Iterated path integrals. Bull. Amer. Math. Soc. 83(5), 831–879 (1977)

    Article  MathSciNet  Google Scholar 

  18. Deligne, P.: Le groupe fondamental de la droite projective moins trois points. In Galois groups over \({\mathbb{Q}}\) (Berkeley, CA, 1987), volume 16 of Math. Sci. Res. Inst. Publ., pages 79–297. Springer, New York (1989)

    Google Scholar 

  19. Deligne, P., Goncharov, A. B.: Groupes fondamentaux motiviques de Tate mixte. Ann. Sci. École Norm. Sup. (4) 38(1), 1–56 (2005)

    Google Scholar 

  20. Drinfel’d, V.G.: On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \({\rm Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\). Leningrad Math. J. 2(4), 829–860 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Enriquez, B.: Elliptic associators. Selecta Math. (N.S.) 20 (2014), no. 2, 491–584

    Google Scholar 

  22. Enriquez, B.: Analogues elliptiques des nombres multizétas. Bull. Soc. Math. France 144(3), 395–427 (2016)

    Article  MathSciNet  Google Scholar 

  23. Furusho, H.: Double shuffle relation for associators. Ann. Math. (2) 174(1), 341–360 (2011)

    Google Scholar 

  24. Gangl, H., Kaneko, M., Zagier, D.: Double zeta values and modular forms. In: Automorphic Forms and Zeta Functions, pp. 71–106. World Scientific Publishing, Hackensack, NJ (2006)

    Google Scholar 

  25. Goncharov, A.B.: Multiple polylogarithms, cyclotomy and modular complexes. Math. Res. Lett. 5(4), 497–516 (1998)

    Article  MathSciNet  Google Scholar 

  26. Goncharov, A.B., Manin, Y.I.: Multiple \(\zeta \)-motives and moduli spaces \(\mathscr {M}_{0, n}\). Compos. Math. 140(1), 1–14 (2004)

    Article  MathSciNet  Google Scholar 

  27. Hain, R.M.: The geometry of the mixed Hodge structure on the fundamental group. In: Algebraic geometry, Bowdoin, 1985 Brunswick, Maine, 1985, volume 46 of Proc. Sympos. Pure Math., pp. 247–282. Amer. Math. Soc., Providence, RI (1987)

    Google Scholar 

  28. Hain, R., Matsumoto M.: Universal mixed elliptic motives. J. Inst. Math. Jussieu 1–104 (2018). https://doi.org/10.1017/S1474748018000130

  29. Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess-Zumino model in two dimensions. Nuclear Phys. B 247(1), 83–103 (1984)

    Article  MathSciNet  Google Scholar 

  30. Le, T.T.Q., Murakami, J.: Kontsevich’s integral for the Kauffman polynomial. Nagoya Math. J. 142, 39–65 (1996)

    Article  MathSciNet  Google Scholar 

  31. Levin, A.: Elliptic polylogarithms: an analytic theory. Compositio Math. 106(3), 267–282 (1997)

    Article  MathSciNet  Google Scholar 

  32. Levin, A., Racinet, G.: Towards multiple elliptic polylogarithms. arXiv:math/0703237

  33. Lochak, P., Matthes, N., Schneps, L.: Elliptic multizetas and the elliptic double shuffle relations, arXiv:1703.09410

  34. Manin, Y. I.: Iterated integrals of modular forms and noncommutative modular symbols. In: Algebraic geometry and number theory, vol. 253 of Progr. Math., pages 565–597. Birkhäuser Boston, Boston, MA (2006)

    Google Scholar 

  35. Matthes, N.: Elliptic multiple zeta values. Ph.D. thesis, Universität Hamburg (2016)

    Google Scholar 

  36. Matthes, N.: Elliptic double zeta values. J. Number Theory 171, 227–251 (2017)

    Article  MathSciNet  Google Scholar 

  37. Pollack, A.: Relations between derivations arising from modular forms. Master’s thesis, Duke University (2009)

    Google Scholar 

  38. Racinet, G.: Doubles mélanges des polylogarithmes multiples aux racines de l’unité. Publ. Math. Inst. Hautes Études Sci. 95, 185–231 (2002)

    Article  MathSciNet  Google Scholar 

  39. Ree, R.: Lie elements and an algebra associated with shuffles. Ann. Math. 2(68), 210–2220 (1958)

    Article  MathSciNet  Google Scholar 

  40. Schlotterer, O., Stieberger, S.: Motivic multiple zeta values and superstring amplitudes. J. Phys. A 46(47), 475401, 37 (2013)

    Google Scholar 

  41. Terasoma, T.: Geometry of multiple zeta values. In: International Congress of Mathematicians. Vol. II, pages 627–635. Eur. Math. Soc., Zürich (2006)

    Google Scholar 

  42. Weil, A.: Elliptic functions according to Eisenstein and Kronecker. Springer, Berlin-New York. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 88 (1976)

    Google Scholar 

  43. Zagier, D.: The Bloch-Wigner-Ramakrishnan polylogarithm function. Math. Ann. 286(1–3), 613–624 (1990)

    Article  MathSciNet  Google Scholar 

  44. Zagier, D.: Periods of modular forms and Jacobi theta functions. Invent. Math. 104(3), 449–465 (1991)

    Article  MathSciNet  Google Scholar 

  45. Zagier, D.: Values of zeta functions and their applications. In: First European Congress of Mathematics, Vol. II (Paris, 1992), volume 120 of Progr. Math., pages 497–512. Birkhäuser, Basel (1994)

    Google Scholar 

Download references

Acknowledgements

Many thanks to the organizers of the Research Trimester on Multiple Zeta Values, held September-December 2014 at ICMAT, Madrid, where part of this research was carried out. This paper contains results obtained in joint work with Johannes Broedel, Carlos Mafra and Oliver Schlotterer, and I would like to thank them very much. Incidentally, that collaboration started after the author gave a talk at the ICMAT in September 2014, as part of this research trimester. Also, many thanks to Henrik Bachmann, Johannes Broedel, Ulf Kühn and Oliver Schlotterer for helpful comments, as well as the Albert-Einstein-Institute in Potsdam, the Department of Applied Mathematics and Theoretical Physics in Cambridge and the Mainz Institute for Theoretical Physics for hospitality. This work is part of the author’s PhD thesis at Universität Hamburg, and I would like to thank my advisor Ulf Kühn for his constant support of my work and for his encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Matthes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matthes, N. (2020). Overview on Elliptic Multiple Zeta Values. In: Burgos Gil, J., Ebrahimi-Fard, K., Gangl, H. (eds) Periods in Quantum Field Theory and Arithmetic. ICMAT-MZV 2014. Springer Proceedings in Mathematics & Statistics, vol 314. Springer, Cham. https://doi.org/10.1007/978-3-030-37031-2_5

Download citation

Publish with us

Policies and ethics