Skip to main content

External Fixators for Deformity Correction

  • Chapter
  • First Online:
Essential Biomechanics for Orthopedic Trauma

Abstract

External fixators have reinvented the art of deformity correction by incorporating the 4D technology of gradual correction over time into the operative strategy. Computer navigation through the use of hexapod technology has further advanced the surgeon’s ability to realign malunited fractures and nonunions safely and reproducibly. Frame stability is paramount to successfully controlling the fixated bone fragments and performing accurate deformity correction with reliable healing. The biomechanics begin with a thorough evaluation of the patient and the radiographs to generate a comprehensive preoperative plan. A stable frame is applied in the operating room, and a minimally invasive surgery is performed when possible. Careful follow-up is done to check the frame integrity including strut markings, the adjacent soft tissues, and the radiographs. Problems and obstacles are addressed. Frame removal is determined by assessing many factors.

The success of this method is proven and is the result of the hard work and courage of many surgeons and patients. Several studies have been cited in this chapter but only represent a fraction of the work that has been done in this field, particularly at the Ilizarov Scientific Center in Kurgan, Russia, where extensive research has taken place for decades. The field of deformity correction continues to evolve as we better understand which deformities can be corrected acutely and which require gradual approach. While internal lengthening technology has dominated femur limb reconstruction in recent years, there will always be a role for circular frames in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ilizarov GA. The apparatus: components and biomechanical principles of application. In: Ilizarov GA, Green SA, editors. Transosseous osteosynthesis. Heidelberg: Springer; 1992. p. 62–136.

    Chapter  Google Scholar 

  2. Ilizarov GA. Correction of deformities of long tubular bones with simultaneous limb lengthening. In: Ilizarov GA, Green SA, editors. Transosseous osteosynthesis. Heidelberg: Springer; 1992. p. 329–63.

    Chapter  Google Scholar 

  3. Fragomen AT, Meade M, Borst E, Nguyen J, Rozbruch SR. Does the surgical correction of tibial torsion with genu varum produce outcomes similar to those in varus correction alone? J Knee Surg. 2018;31(4):359–69.

    Article  PubMed  Google Scholar 

  4. Ring D, Jupiter JB, Labropoulos PK, Guggenheim JJ, Stanitsky DF, Spencer DM. Treatment of deformity of the lower limb in adults who have osteogenesis imperfecta. J Bone Joint Surg Am. 1996;78(2):220–5.

    Article  CAS  PubMed  Google Scholar 

  5. Krappinger D, Zegg M, Smekal V, Huber B. [Correction of posttraumatic lower leg deformities using the Taylor Spatial Frame]. Oper Orthop Traumatol. 2014;26(5):520–31. [Article in German].

    Google Scholar 

  6. Alexis F, Herzenberg JE, Nelson SC. Deformity correction in Haiti with the Taylor Spatial Frame. Orthop Clin North Am. 2015;46(1):9–19.

    Article  PubMed  Google Scholar 

  7. Küçükkaya M, Karakoyun O, Armağan R, Kuzgun U. [Correction of complex lower extremity deformities with the use of the Ilizarov-Taylor spatial frame]. Acta Orthop Traumatol Turc. 2009;43(1):1–6. [Article in Turkish].

    Article  PubMed  Google Scholar 

  8. Seybold D, Gessmann J, Ozokyay L, Bäcker H, Muhr G, Graf M. Deformity correction of post-traumatic tibial non-unions using the Taylor Spatial Frame. Z Orthop Unfall. 2009;147(1):26–31.

    Article  CAS  PubMed  Google Scholar 

  9. Paley D, Catagni MA, Argnani F, Villa A, Benedetti GB, Cattaneo R. Ilizarov treatment of tibial nonunions with bone loss. Clin Orthop Relat Res. 1989;241:146–65.

    Google Scholar 

  10. Tetsworth KD, Paley D. Accuracy of correction of complex lower-extremity deformities by the Ilizarov method. Clin Orthop Relat Res. 1994;301:102–10.

    Google Scholar 

  11. Shtarker H, Volpin G, Stolero J, Kaushansky A, Samchukov M. Correction of combined angular and rotational deformities by the Ilizarov method. Clin Orthop Relat Res. 2002;402:184–95.

    Article  Google Scholar 

  12. Sen C, Kocaoglu M, Eralp L, Cinar M. Correction of ankle and hindfoot deformities by supramalleolar osteotomy. Foot Ankle Int. 2003;24(1):22–8.

    Article  PubMed  Google Scholar 

  13. Chaudhary M. Taylor spatial frame-software-controlled fixator for deformity correction-the early Indian experience. Indian J Orthop. 2007;41(2):169–74.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Marangoz S, Feldman DS, Sala DA, Hyman JE, Vitale MG. Femoral deformity correction in children and young adults using Taylor Spatial Frame. Clin Orthop Relat Res. 2008;466(12):3018–24.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rozbruch SR, Pugsley JS, Fragomen AT, Ilizarov S. Repair of tibial nonunions and bone defects with the Taylor Spatial Frame. J Orthop Trauma. 2008;22(2):88–95.

    Article  PubMed  Google Scholar 

  16. Rozbruch SR, Segal K, Ilizarov S, Fragomen AT, Ilizarov G. Does the Taylor Spatial Frame accurately correct tibial deformities? Clin Orthop Relat Res. 2010;468(5):1352–61.

    Article  PubMed  Google Scholar 

  17. Horn DM, Fragomen AT, Rozbruch SR. Supramalleolar osteotomy using external fixation with six-axis deformity correction of the distal tibia. Foot Ankle Int. 2011;32:986–93.

    Article  PubMed  Google Scholar 

  18. Sökücü S, Karakoyun Ö, Arıkan Y, Küçükkaya M, Kabukcuoğlu Y. Efficacy of the Taylor spatial frame in the treatment of deformities around the knee. Acta Orthop Traumatol Turc. 2013;47(2):86–90.

    Article  PubMed  Google Scholar 

  19. Arvesen JE, Tracy Watson J, Israel H. Effectiveness of treatment for distal tibial nonunions with associated complex deformities using a hexapod external fixator. J Orthop Trauma. 2017;31(2):e43–8.

    Article  PubMed  Google Scholar 

  20. Manner HM, Huebl M, Radler C, Ganger R, Petje G, Grill F. Accuracy of complex lower-limb deformity correction with external fixation: a comparison of the Taylor Spatial Frame with the Ilizarov ring fixator. J Child Orthop. 2007;1(1):55–61.

    Article  PubMed  Google Scholar 

  21. Dammerer D, Kirschbichler K, Donnan L, Kaufmann G, Krismer M, Biedermann R. Clinical value of the Taylor Spatial Frame: a comparison with the Ilizarov and Orthofix fixators. J Child Orthop. 2011;5(5):343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eren I, Eralp L, Kocaoglu M. Comparative clinical study on deformity correction accuracy of different external fixators. Int Orthop. 2013;37(11):2247–52.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lark RK, Lewis JS Jr, Watters TS, Fitch RD. Radiographic outcomes of ring external fixation for malunion and nonunion. J Surg Orthop Adv. 2013;22(4):316–20.

    Article  PubMed  Google Scholar 

  24. Solomin LN, Paley D, Shchepkina EA, Vilensky VA, Skomoroshko PV. A comparative study of the correction of femoral deformity between the Ilizarov apparatus and Ortho-SUV Frame. Int Orthop. 2014;38(4):865–72.

    Article  PubMed  Google Scholar 

  25. Reitenbach E, Rödl R, Gosheger G, Vogt B, Schiedel F. Deformity correction and extremity lengthening in the lower leg: comparison of clinical outcomes with two external surgical procedures. Springerplus. 2016;5(1):2003. eCollection 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Paley D, Tetsworth K. Mechanical axis deviation of the lower limbs. Preoperative planning of uniapical angular deformities of the tibia or femur. Clin Orthop Relat Res. 1992;280:48–64.

    Google Scholar 

  27. Paley D, Tetsworth K. Mechanical axis deviation of the lower limbs. Preoperative planning of multiapical frontal plane angular and bowing deformities of the femur and tibia. Clin Orthop Relat Res. 1992;280:65–71.

    Google Scholar 

  28. Calhoun JH, Li F, Bauford WL, Lehman T, Ledbetter BR, Lowery R. Rigidity of half-pins for the Ilizarov external fixator. Bull Hosp Jt Dis. 1992;52(1):21–6.

    CAS  PubMed  Google Scholar 

  29. Donaldson FE, Pankaj P, Simpson AH. Investigation of factors affecting loosening of Ilizarov ring-wire external fixator systems at the bone-wire interface. J Orthop Res. 2012;30(5):726–32.

    Article  PubMed  Google Scholar 

  30. Lowenberg DW, Feibel RJ, Louie KW, Eshima I. Combined muscle flap and Ilizarov reconstruction for bone and soft tissue defects. Clin Orthop Relat Res. 1996;332:37–51.

    Article  Google Scholar 

  31. McNally M, Ferguson J, Kugan R, Stubbs D. Ilizarov treatment protocols in the management of infected nonunion of the tibia. J Orthop Trauma. 2017;31(Suppl 5):S47–54.

    Article  PubMed  Google Scholar 

  32. Rozbruch SR, Kleinman D, Fragomen AT, Ilizarov S. Limb lengthening and then insertion of an intramedullary nail: a case-matched comparison. Clin Orthop Relat Res. 2008;466(12):2923–32.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Juan JA, Prat J, Vera P, et al. Biomechanical consequences of callus development in Hoffmann, Wagner, Orthofix and Ilizarov external fixators. J Biomech. 1992;25(9):995–1006.

    Article  CAS  PubMed  Google Scholar 

  34. Hegde V, Jo JE, Andreopoulou P, Lane JM. Effect of osteoporosis medications on fracture healing. Osteoporos Int. 2016;27(3):861–71.

    Article  CAS  PubMed  Google Scholar 

  35. Fourman MS, Borst EW, Bogner E, Rozbruch SR, Fragomen AT. Recombinant human BMP-2 increases the incidence and rate of healing in complex ankle arthrodesis. Clin Orthop Relat Res. 2014;472(2):732–9.

    Article  PubMed  Google Scholar 

  36. Fragomen AT, Borst E, Schachter L, Lyman S, Rozbruch SR. Complex ankle arthrodesis using the Ilizarov method yields high rate of fusion. Clin Orthop Relat Res. 2012;470(10):2864–73.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lamm BM, Paley D, Testani M, Herzenberg JE. Tarsal tunnel decompression in leg lengthening and deformity correction of the foot and ankle. J Foot Ankle Surg. 2007;46(3):201–6.

    Article  PubMed  Google Scholar 

  38. Nogueira MP, Paley D, Bhave A, Herbert A, Nocente C, Herzenberg JE. Nerve lesions associated with limb-lengthening. J Bone Joint Surg Am. 2003;85-A(8):1502–10.

    Article  Google Scholar 

  39. Seah KT, Shafi R, Fragomen AT, Rozbruch SR. Distal femoral osteotomy: is internal fixation better than external? Clin Orthop Relat Res. 2011;469(7):2003–11.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Paley D, Herzenberg JE, Paremain G, Bhave A. Femoral lengthening over an intramedullary nail. A matched-case comparison with Ilizarov femoral lengthening. J Bone Joint Surg Am. 1997;79(10):1464–80.

    Article  CAS  PubMed  Google Scholar 

  41. Catagni MA. Biomechanics of the Ilizarov method. In: Maiocchi B, editor. Treatment of fractures, nonunions, and bone loss of the tibia with the Ilizarov method. Milan: Il Quadratino; 1998. p. 21–4.

    Google Scholar 

  42. Bronson DG, Samchukov ML, Birch JG, Browne RH, Ashman RB. Stability of external circular fixation: a multi-variable biomechanical analysis. Clin Biomech (Bristol, Avon). 1998;13(6):441–8.

    Article  Google Scholar 

  43. Gasser B, Boman B, Wyder D, Schneider E. Stiffness characteristics of the circular Ilizarov device as opposed to conventional external fixators. J Biomech Eng. 1990;112(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  44. Hudson CC, Lewis DD, Cross AR, Horodyski M, Banks SA, Pozzi A. Axial stiffness and ring deformation of complete and incomplete single ring circular external skeletal fixator constructs. Am J Vet Res. 2012;73(12):2021–8.

    Article  PubMed  Google Scholar 

  45. Hudson CC, Lewis DD, Cross AR, Dunbar NJ, Horodyski M, Banks SA, Pozzi A. A biomechanical comparison of three hybrid linear-circular external fixator constructs. Vet Surg. 2012;41(8):954–6.

    Article  PubMed  Google Scholar 

  46. Grivas TB, Magnissalis EA. The use of twin-ring Ilizarov external fixator constructs: application and biomechanical proof-of principle with possible clinical indications. J Orthop Surg Res. 2011;6:41.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Antoci V, Voor MJ, Seligson D, Roberts CS. Biomechanics of external fixation of distal tibial extra-articular fractures: is spanning the ankle with a foot plate desirable? J Orthop Trauma. 2004;18(10):665–73.

    Article  PubMed  Google Scholar 

  48. Henderson DJ, Rushbrook JL, Harwood PJ, Stewart TD. What are the biomechanical properties of the Taylor Spatial Frame™? Clin Orthop Relat Res. 2017;475(5):1472–82.

    Article  PubMed  Google Scholar 

  49. Tan B, Shanmugam R, Gunalan R, Chua Y, Hossain G, Saw A. A biomechanical comparison between Taylor's Spatial Frame and Ilizarov external fixator. Malays Orthop J. 2014;8(2):35–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Antoci V, Roberts CS, Antoci V Jr, Voor MJ. The effect of transfixion wire number and spacing between two levels of fixation on the stiffness of proximal tibial external fixation. J Orthop Trauma. 2005;19(3):180–6.

    Article  PubMed  Google Scholar 

  51. Glatt V, Tepic S, Evans C. Reverse dynamization: a novel approach to bone healing. J Am Acad Orthop Surg. 2016;24(7):e60–1.

    Article  PubMed  Google Scholar 

  52. Rödl R, Leidinger B, Böhm A, Winkelmann W. [Correction of deformities with conventional and hexapod frames--comparison of methods]. Z Orthop Ihre Grenzgeb. 2003;141(1):92–8. [Article in German].

    Article  PubMed  Google Scholar 

  53. Henderson ER, Feldman DS, Lusk C, van Bosse HJ, Sala D, Kummer FJ. Conformational instability of the Taylor spatial frame: a case report and biomechanical study. J Pediatr Orthop. 2008;28(4):471–7.

    Article  PubMed  Google Scholar 

  54. Lenarz C, Bledsoe G, Watson JT. Circular external fixation frames with divergent half pins: a pilot biomechanical study. Clin Orthop Relat Res. 2008;466(12):2933–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zenios M, Oyadiji SO. Effect of asymmetrical configuration of pins in the TSF external fixator used for tibial lengthening in a pediatric population. J Pediatr Orthop. 2014;34(6):618–24.

    PubMed  Google Scholar 

  56. Skomoroshko PV, Vilensky VA, Hammouda AI, Fletcher MD, Solomin LN. Mechanical rigidity of the Ortho-SUV frame compared to the Ilizarov frame in the correction of femoral deformity. Strategies Trauma Limb Reconstr. 2015;10(1):5–11.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Faschingbauer M, Heuer HJ, Seide K, Wendlandt R, Münch M, Jürgens C, Kirchner R. Accuracy of a hexapod parallel robot kinematics based external fixator. Int J Med Robot. 2015;11(4):424–35.

    Article  PubMed  Google Scholar 

  58. Birkholtz F, Ferreira N. Catastrophic strut collapse with the Taylor Spatial Frame: preventing a disaster. J Med Eng Technol. 2016;40(2):52–4.

    Article  CAS  PubMed  Google Scholar 

  59. Podolsky A, Chao EY. Mechanical performance of Ilizarov circular external fixators in comparison with other external fixators. Clin Orthop Relat Res. 1993;293:61–70.

    Google Scholar 

  60. Zamani AR, Oyadiji SO. Analytical modelling of Kirschner wires in Ilizarov circular external fixators using a tensile model. Proc Inst Mech Eng H. 2008;222(6):967–76.

    Article  CAS  PubMed  Google Scholar 

  61. Henderson DJ, Rushbrook JL, Stewart TD, Harwood PJ. What are the biomechanical effects of half-pin and fine-wire configurations on fracture site movement in circular frames? Clin Orthop Relat Res. 2016;474(4):1041–9.

    Article  PubMed  Google Scholar 

  62. Dearden P, Lowery K, Sherman K, Mahadevan V, Sharma H. Fibular head transfixion wire and its relationship to common peroneal nerve: cadaveric analysis. Strategies Trauma Limb Reconstr. 2015;10(2):73–8.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Caja V, Kim W, Larsson S, E YC. Comparison of the mechanical performance of three types of external fixators: linear, circular and hybrid. Clin Biomech (Bristol, Avon). 1995;10(8):401–6.

    Article  Google Scholar 

  64. Orbay GL, Frankel VH, Kummer FJ. The effect of wire configuration on the stability of the Ilizarov external fixator. Clin Orthop Relat Res. 1992;279:299–302.

    Google Scholar 

  65. Lewis RA, Lewis DD, Anderson CL, Hudson CC, Coggeshall JD, Iorgulescu AD, Banks SA. Mechanics of supplemental drop wire and half-pin fixation elements in single ring circular external fixator constructs. Vet Surg. 2016;45(4):471–9.

    Article  PubMed  Google Scholar 

  66. Arango J, Lewis DD, Hudson CC, Horodyski M. A biomechanical evaluation of three drop wire configurations. Vet Surg. 2013;42(6):669–77.

    Article  PubMed  Google Scholar 

  67. Antoci V, Ono CM, Antoci V Jr, Raney EM. Pin-tract infection during limb lengthening using external fixation. Am J Orthop (Belle Mead NJ). 2008;37(9):E150–4.

    Google Scholar 

  68. Moroni A, Cadossi M, Romagnoli M, Faldini C, Giannini S. A biomechanical and histological analysis of standard versus hydroxyapatite-coated pins for external fixation. J Biomed Mater Res B Appl Biomater. 2008;86(2):417–21.

    Article  PubMed  CAS  Google Scholar 

  69. Caja VL, Piză G, Navarro A. Hydroxyapatite coating of external fixation pins to decrease axial deformity during tibial lengthening for short stature. J Bone Joint Surg Am. 2003;85-A:1527–31.

    Article  Google Scholar 

  70. Pizà G, Caja VL, González-Viejo MA, Navarro A. Hydroxyapatite-coated external-fixation pins. The effect on pin loosening and pin-track infection in leg lengthening for short stature. J Bone Joint Surg Br. 2004;86:892–7.

    Article  PubMed  Google Scholar 

  71. Jabbar Y, Khaleel A. Experimental model for controlling shear using the Ilizarov frame. Clin Biomech (Bristol, Avon). 2015;30(9):995–1001.

    Article  Google Scholar 

  72. Cavusoglu AT, Ozsoy MH, Dincel VE, Sakaogullari A, Basarir K, Ugurlu M. The use of a low-profile Ilizarov external fixator in the treatment of complex fractures and non-unions of the distal femur. Acta Orthop Belg. 2009;75(2):209–18.

    PubMed  Google Scholar 

  73. Parameswaran AD, Roberts CS, Seligson D, Voor M. Pin tract infection with contemporary external fixation: how much of a problem? J Orthop Trauma. 2003;17(7):503–7.

    Article  PubMed  Google Scholar 

  74. Pommer A, Muhr G, David A. Hydroxyapatite-coated Schanz pins in external fixators used for distraction osteogenesis : a randomized, controlled trial. J Bone Joint Surg Am. 2002;84-A(7):1162–6.

    Article  Google Scholar 

  75. Solomin LN. The basic principles of external skeletal fixation using the Ilizarov device. Milan: Springer; 2008. p. 1–128.

    Google Scholar 

  76. Elliott DS, Newman KJ, Forward DP, Hahn DM, Ollivere B, Kojima K, et al. A unified theory of bone healing and nonunion: BHN theory. Bone Joint J. 2016;98-B(7):884–91.

    Article  CAS  PubMed  Google Scholar 

  77. Bernstein M, Fragomen AT, Sabharwal S, Barclay J, Rozbruch SR. Does integrated fixation provide benefit in the reconstruction of posttraumatic tibial bone defects? Clin Orthop Relat Res. 2015;473(10):3143–53.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Napora JK, Weinberg DS, Eagle BA, Kaufman BR, Sontich JK. Hexapod stacked transport for tibial infected nonunions with bone loss: long-term functional outcomes. J Orthop Trauma. 2018;32(1):e12–8.

    Article  PubMed  Google Scholar 

  79. Rozbruch SR, Fragomen A, Ilizarov S. Correction of tibial deformity with use of the Ilizarov-Taylor Spatial Frame. J Bone Joint Surg Am. 2006;88(Suppl 4):156–74.

    PubMed  Google Scholar 

  80. Ferreira N, Marais LC, Aldous C. Hexapod external fixator closed distraction in the management of stiff hypertrophic tibial nonunions. Bone Joint J. 2015;97-B(10):1417–22.

    Article  CAS  PubMed  Google Scholar 

  81. Shchudlo N, Varsegova T, Stupina T, Shchudlo M, Saifutdinov M, Yemanov A. Benefits of Ilizarov automated bone distraction for nerves and articular cartilage in experimental leg lengthening. World J Orthop. 2017;8(9):688–96.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rozbruch SR, Zonshayn S, Muthusamy S, Borst EW, Fragomen AT, Nguyen JT. What risk factors predict usage of gastrosoleus recession during tibial lengthening? Clin Orthop Relat Res. 2014;472(12):3842–51.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Babatunde OM, Fragomen AT, Rozbruch SR. Noninvasive quantitative assessment of bone healing after distraction osteogenesis. HSS J. 2010;6(1):71–8.

    Article  PubMed  Google Scholar 

  84. Iobst CA, Mohammed W, Colley R. Determining when it is safe to remove the external fixator: results from a survey of the limb lengthening and reconstruction society. Orthopedics. 2017;40(5):e876–9.

    Article  PubMed  Google Scholar 

  85. Schiedel F, Vogt B, Wacker S, Pöpping J, Bosch K, Rödl R, Rosenbaum D. Walking ability of children with a hexapod external ring fixator (TSF®) and foot plate mounting at the lower leg. Gait Posture. 2012;36(3):500–5.

    Article  CAS  PubMed  Google Scholar 

  86. Harbacheuski R, Fragomen AT, Rozbruch SR. Does lengthening and then plating (LAP) shorten duration of external fixation? Clin Orthop Relat Res. 2012;470(6):1771–81.

    Article  PubMed  Google Scholar 

  87. Velazquez RJ, Bell DF, Armstrong PF, Babyn P, Tibirani R. Complications of use of the Ilizarov technique in the correction of limb deformities in children. J Bone Joint Surg Am. 1993;75(8):1148–56.

    Article  CAS  PubMed  Google Scholar 

  88. Paley D. Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res. 1990;250:81–104.

    Google Scholar 

  89. Fragomen AT, Miller AO, Brause BD, Goldman V, Rozbruch SR. Prophylactic post operative antibiotics may not reduce pin site infections after external fixation. HSS J. 2017;13(2):165–70.

    Article  PubMed  Google Scholar 

  90. Kazmers NH, Fragomen AT, Rozbruch SR. Prevention of pin site infection in external fixation: a review of the literature. Strat Trauma Limb Recon. 2016;2:75–85.

    Google Scholar 

  91. Aronson J, Harp JH Jr. Mechanical considerations in using tensioned wires in a transosseous external fixation system. Clin Orthop Relat Res. 1992;280:23–9.

    Google Scholar 

  92. Gessmann J, Jettkant B, Königshausen M, Schildhauer TA, Seybold D. Improved wire stiffness with modified connection bolts in Ilizarov external frames: a biomechanical study. Acta Bioeng Biomech. 2012;14(4):15–21.

    PubMed  Google Scholar 

  93. La Russa V, Skallerud B, Klaksvik J, Foss OA. Reduction in wire tension caused by dynamic loading. An experimental Ilizarov frame study. J Biomech. 2011;44(8):1454–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austin T. Fragomen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fragomen, A.T., Livingston, K.S., Sabharwal, S. (2020). External Fixators for Deformity Correction. In: Crist, B., Borrelli Jr., J., Harvey, E. (eds) Essential Biomechanics for Orthopedic Trauma. Springer, Cham. https://doi.org/10.1007/978-3-030-36990-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36990-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36989-7

  • Online ISBN: 978-3-030-36990-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics