Skip to main content

Meteorological Services for Forecast Based Early Actions in Indonesia

  • Chapter
  • First Online:

Part of the book series: Climate Change Management ((CCM))

Abstract

The increasing frequency of climate related hazards leading to disasters stipulates the government of Indonesia to pay serious attention to mitigate the adverse impacts of the disasters. An initiative is the utilization of climate and/or weather forecasts to support the installment of impact-based forecasts and risk-based warnings. This study investigated the feasibility of supporting Forecast Based Early Actions (FbA) implementation in Indonesia based on document reviews, identification of supporting tools, and stakeholders’ consultations with the key informants. Understanding the available resources for supporting early actions, the study recommends focusing on two major climate related hazards, i.e., floods and drought, as the two most impacted hazards on human lives and assets with refer to the available datasets from 1972 to 2018. The implementation of FbA for the two hazards also sounds promising with regards to available and accessible forecasted rainfall occurrences and amount (e.g., one day, 3-day and 10-day prediction, and seasonal forecasts) across the country provided by Meteorological, Climatological, and Geophysical Agency named in bahasa Badan Meteorologi, Klimatologi, dan Geofisika (BMKG). Nevertheless, the forecast accuracies should still be improved and automatically connected with hazard-based models (e.g., flood or drought) nationally. This demand urges that further efforts are needed to endorse the implementation of FbA in Indonesia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • BAPPENAS (2014) Rencana aksi nasional adaptasi perubahan iklim (RAN-API). BAPPENAS, Indonesia

    Google Scholar 

  • Baros AN, Bowden GJ (2008) Toward long-lead operational forecasts of drought: an experimental study in the Murray-Darling River Basin. J Hydrol 357:349–367

    Article  Google Scholar 

  • Belayneh AM, Khalil B, Adamowski J (2015) Short-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet transforms and machine learning methods. Sustain Water Resourse Manag. https://doi.org/10.1007/s40899-015-0040-5

    Article  Google Scholar 

  • BNPB (2017) Data Informasi Bencana Indonesia (DIBI). Retrieved 1 Aug 2018, from http://dibi.bnpb.go.id/

  • Bocchiola D, Rosso R (2006) Real time flood forecasting at dams: a case study in Italy. Int J Hydropower Dams 13(1):92–99

    Google Scholar 

  • Calvello M (2017) Early warning strategies to cope with landslide risk. Rivista Italiana di Geotecnica 51(2):63–91

    Google Scholar 

  • Calvello M, Piciullo L (2015) Assessing the performance of regional landslide early warning models: the EduMap method. Nat Hazards Earth System Science 16:103–122. https://doi.org/10.5194/nhess-16-103-2016

    Article  Google Scholar 

  • Carrão H, Naumann G, Dutra E, Lavaysse C, Barbosa P (2018) Seasonal drought forecasting for Latin America using the ECMWF S4 forecast system. Climate 6(48):1–26

    Google Scholar 

  • Climate Centre (2017) Criteria for identification and design of Forecast-based Financing interventions. IFRC

    Google Scholar 

  • Coughlan de Perez E, van den Hurk MK, van Aalst B, Jongman T Klose, Suarez P (2015) Forecast-based financing: an approach for catalyzing humanitarian action based on extreme weather and climate forecasts. Nat Hazards Earth Syst Sci 15:10. https://doi.org/10.5194/nhess-15-895-2015

    Article  Google Scholar 

  • Dugar S, Smith P, Parajuli B, Khanal S, Brown S, Gautam D, Bhandari D, Gurung G, Shakya P, Kharbuja R, Uprety M (2017) Enhancing community based early warning systems in Nepal with flood forecasting using local and global models, EGU General Assembly. Geophysical Research Abstracts, vol 19, EGU2017-8995-1

    Google Scholar 

  • Durdu OF (2010) Application of linear stochastic models for drought forecasting in the Büyük Menderes river basin, western Turkey. Stoch Environ Res Risk Assess 24:1145–1162

    Article  Google Scholar 

  • Dutra E, Di Giuseppe F, Wetterhall F, Pappenberger F (2013) Seasonal forecasts of droughts in African basins using the standardized precipitation index. Hydrol Earth Syst Sci 17:2359–2373. https://doi.org/10.5194/hess-17-2359-2013

    Article  Google Scholar 

  • ECOSOC (2018) Innovation—financing, technology, knowledge and action. ECOSOC Humanitarian Affairs Segment, Palais des Nations, Geneva

    Google Scholar 

  • FAO (2017) From early warning to early action in Mongolia—bracing for the cold to protect livestock and livelihoods (Press release)

    Google Scholar 

  • Golding BW (2009) Review long lead time flood warnings: reality or fantasy? Meteorogical Appl 16:3–12. https://doi.org/10.1002/met.123

    Article  Google Scholar 

  • Government of India (2012) Flood early warning system—a warning mechanism for mitigating disaster during flood. Department of administrative reform and public grievances, Ministry of Personnel, Public Grievances & Pensions, p 44

    Google Scholar 

  • GRC (2018) REPORT Dialogue Platform on FbF Issue No. 02/2018 (Press release)

    Google Scholar 

  • ISRO (2012) Flood early warning system and damage mitigation. Indian Space Research Organization, India

    Google Scholar 

  • Kalra A, Ahmad S (2012) Estimating annual precipitation for the Colorado River Basin using ocean ice atmospheric oscillations. Water Resour Res 48. https://doi.org/10.1029/2011wr010667

  • Komma J, Blöschl G, Reszler C (2008) Soil moisture updating by Ensemble Kalman Filtering in real-time flood forecasting. J Hydrol 357(3–4):228–242

    Article  Google Scholar 

  • Lyon B, Bell MA, Tippett MK (2012) Baseline probabilities for the seasonal prediction of meteorological drought. J Appl Meteorol Climatol 51(7):1222–1237

    Article  Google Scholar 

  • Matthew C, Freebairn C (2018) New fund could be a “game-changer” for humanitarian action. Retrieved 1 Aug 2018, from https://media.ifrc.org/ifrc/press-release/new-fund-game-changer-humanitarian-action/

  • McEvoy DJ, Huntington JL, Mejia JF, Hobbins MT (2016) Improved seasonal drought forecasts using reference evapotranspiration anomalies. Geophys Res Lett 43(1):377–385

    Article  Google Scholar 

  • Mehr AD, Kahya E, Ozger M (2014) A gene–wavelet model for long lead time drought forecasting. J Hydrol 517:691–699. https://doi.org/10.1016/j.jhydrol.2014.06.012

    Article  Google Scholar 

  • Mishra AK, Desai V (2005) Drought forecasting using stochastic models. Environ Res Risk Assess 19:326–339. https://doi.org/10.1007/s00477-005-0238-4

    Article  Google Scholar 

  • Morid S, Smakhtin V, Bagherzadeh K (2007) Drought forecasting using artificial neural network and time series of drought indices. Int J Climatol 27:2103–2111. https://doi.org/10.1002/joc.1498

    Article  Google Scholar 

  • Ozger M (2011) Long lead time drought forecasting using a wavelet and fuzzy logic combination model: a case study in texas. J Hydrometeorol 13:284–297. https://doi.org/10.1175/JHM-D-10-05007.1

    Article  Google Scholar 

  • Perdinan, Adi RF, Sutoro T (2017) Perkembangan Studi Kerentanan, Resiko, Dampak dan Adaptasi Perubahan Iklim: Tantangan dan Peluang. Direktorat Jenderal Perubahan Iklim – Kementerian Lingkungan Hidup dan Kehutanan, Jakarta. ISBN: 978-60-2740-119-8

    Google Scholar 

  • Philipp A, Kerl F, Büttner U, Metzkes C, Singer T, Wagner M, Schütze N (2016) Small-scale (flash) flood early warning in the light of operational requirements: opportunities and limits with regard to user demands, driving data, and hydrologic modeling techniques. IAHS-AISH Proc Rep 373(1):201–208

    Article  Google Scholar 

  • Rhee J, Im J, Park S (2016) Drought forecasting based on machine learning of remote sensing and long-range forecast data. International Archives of the Photogrammetry. Remote Sens Spat Inf Sci-ISPRS Arch 41(July):157–158

    Article  Google Scholar 

  • Sassa K, Nagai O, Solidum R, Yamazaki Y, Ohta H (2010) An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslide and its application to the 2006 Leyte landslide. https://doi.org/10.1007/s10346-010-0230-z

    Article  Google Scholar 

  • Schroter K, Gocht M, Ostrowski M, Nachtnebel HP (2008) EWASE—early warning systems efficiency: evaluation of flood forecast reliability. Paper presented at the Flood Risk Management: Research and Practice, London

    Chapter  Google Scholar 

  • Segoni S, Battistini A, Rossi G, Rosi A, Lagomarsino D, Catani F, Moretti S, Casagli N (2015) Technical note: an operational landslide early warning system at regional scale based on space-time-variable rainfall thresholds. Nat Hazards Earth Syst Sci 15(4):853–861

    Article  Google Scholar 

  • Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Nino frequency in a climate model forced by future greenhouse warming. Nature 398(6729):694–697

    Article  CAS  Google Scholar 

  • Trambauer P, Werner M, Winsemius HC, Maskey S, Dutra E, Uhlenbrook S (2015) Hydrological drought forecasting and skill assessment for the Limpopo River basin, southern Africa. Hydrol Earth Syst Sci 19(4):1695–1711

    Article  Google Scholar 

  • Turco M, Ceglar A, Prodhomme C, Soret A, Toreti A, Francisco JD-R (2017) Summer drought predictability over Europe: empirical versus dynamical forecasts. Environ Res Lett 12. https://doi.org/10.1088/1748-9326/aa7859

    Article  Google Scholar 

  • Wilkinson E, Weingartner L, Choularton R, Bailey M, Todd M, Kniveton D, Venton CC (2018) Forecasting hazards, averting disasters: implementing forecast-based early action at scale. Overseas Development Institute, London

    Google Scholar 

  • WMO (2011) Manual on flood forecasting and warning, vol 1. WMO, Switzerland

    Google Scholar 

  • Worldbank (2018) Improving lead time for tropical cyclone forecasting: review of operational practices and implications for Bangladesh. Worldbank, Bangladesh

    Book  Google Scholar 

Download references

Acknowledgements

This manuscript is based on work supported by IFRC-RCS, research study #CLMX013580 for conducting the study, and APN grant #CBA2018-09SY-Perdinan and WCU program of Indonesian Ministry of Research, Technology and Higher Education managed by Institute Technology Bandung for finalizing the report version for publication. The authors also send gratitude to the key stakeholders from climate center and respondents for their invaluable insights during the interview processes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perdinan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perdinan et al. (2020). Meteorological Services for Forecast Based Early Actions in Indonesia. In: Leal Filho, W., Jacob, D. (eds) Handbook of Climate Services. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-030-36875-3_18

Download citation

Publish with us

Policies and ethics