Skip to main content

Transient Artifacts Suppression in Time Series via Convex Analysis

  • Chapter
  • First Online:
Signal Processing in Medicine and Biology
  • 652 Accesses

Abstract

This book chapter addresses the suppression of transient artifacts in time series data. We categorize the transient artifacts into two general types: spikes and brief waves with zero baseline, and step discontinuities. We propose a sparse-assisted optimization problem for the estimation of signals comprising a low-pass signal, a sparse piecewise constant signal, a piecewise constant signal, and additive white Gaussian noise. For better estimation of the artifacts, in turns better suppression performance, we propose a non-convex generalized conjoint penalty that can be designed to preserve the convexity of the total cost function to be minimized, thereby realizing the benefits of a convex optimization framework (reliable, robust algorithms, etc.). Compared to the conventional use of 1 norm penalty, the proposed non-convex penalty does not underestimate the true amplitude of signal values. We derive a fast proximal algorithm to implement the method. The proposed method is demonstrated on the suppression of artifacts in near-infrared spectroscopic (NIRS) measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhtar, M. T., Mitsuhashi, W., & James, C. J. (2012). Employing spatially constrained ICA and wavelet denoising, for automatic removal of artifacts from multichannel EEG data. Signal Processing, 92(2), 401–416.

    Article  Google Scholar 

  2. Ayaz, H., Izzetoglu, M., Shewokis, P. A., & Onaral, B. (2010). Sliding-window motion artifact rejection for functional near-infrared spectroscopy. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (pp. 6567–6570).

    Google Scholar 

  3. Bauschke, H. H. & Combettes, P. L. (2011). Convex analysis and monotone operator theory in Hilbert spaces (Vol. 408). New York: Springer.

    Book  MATH  Google Scholar 

  4. Bayram, I., Chen, P.-Y., & Selesnick, I. (2014, May). Fused lasso with a non-convex sparsity inducing penalty. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

    Google Scholar 

  5. Blake, A. & Zisserman, A. (1987). Visual reconstruction. Cambridge: MIT Press.

    Book  Google Scholar 

  6. Bobin, J., Starck, J.-L., Fadili, J. M., Moudden, Y., & Donoho, D. L. (2007). Morphological component analysis: An adaptive thresholding strategy. IEEE Transactions on Image Processing, 16(11), 2675–2681.

    Article  MathSciNet  MATH  Google Scholar 

  7. Calkins, M. E., Katsanis, J., Hammer, M. A., & Iacono, W. G. (2001). The misclassification of blinks as saccades: Implications for investigations of eye movement dysfunction in schizophrenia. Psychophysiology, 38(5), 761–767.

    Article  Google Scholar 

  8. Condat, L. (2013). A direct algorithm for 1-d total variation denoising. IEEE Signal Processing Letters, 20(11), 1054–1057.

    Article  Google Scholar 

  9. Cooper, R., Selb, J., Gagnon, L., Phillip, D., Schytz, H. W., Iversen, H. K., et al. (2012). A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy. Frontiers in Neuroscience, 6, 147.

    Article  Google Scholar 

  10. Damon, C., Liutkus, A., Gramfort, A., & Essid, S. (2013). Non-negative matrix factorization for single-channel EEG artifact rejection. In IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 1177–1181).

    Google Scholar 

  11. Feng, Y., Graber, H., & Selesnick, I. (2018). The suppression of transient artifacts in time series via convex analysis. In 2018 IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1–6).

    Google Scholar 

  12. Friedman, J., Hastie, T., Höfling, H., & Tibshirani, R. (2007). Pathwise coordinate optimization. The Annals of Applied Statistics, 1(2), 302–332.

    Article  MathSciNet  MATH  Google Scholar 

  13. Graber, H. L., Xu, Y., & Barbour, R. L. (2011). Optomechanical imaging system for breast cancer detection. Journal of the Optical Society of America A, 28(12), 2473–2493.

    Article  Google Scholar 

  14. Islam, M. K., Rastegarnia, A., Nguyen, A. T., & Yang, Z. (2014). Artifact characterization and removal for in vivo neural recording. Journal of Neuroscience Methods, 226, 110–123.

    Article  Google Scholar 

  15. Jahani, S., Setarehdan, S. K., Boas, D. A., & Yücel, M. A. (2018). Motion artifact detection and correction in functional near-infrared spectroscopy: A new hybrid method based on spline interpolation method and Savitzky–Golay filtering. Neurophotonics, 5(1), 015003.

    Article  Google Scholar 

  16. Lanza, A., Morigi, S., Selesnick, I., & Sgallari, F. (2017). Sparsity-inducing non-convex non-separable regularization for convex image processing. Preprint.

    MATH  Google Scholar 

  17. Metz, A. J., Wolf, M., Achermann, P., & Scholkmann, F. (2015). A new approach for automatic removal of movement artifacts in near-infrared spectroscopy time series by means of acceleration data. Algorithms, 8(4), 1052–1075.

    Article  MathSciNet  MATH  Google Scholar 

  18. Molavi, B. & Dumont, G. A. (2012). Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiological Measurement, 33(2), 259–270.

    Article  Google Scholar 

  19. Molla, M. K. I., Islam, M. R., Tanaka, T., & Rutkowski, T. M. (2012). Artifact suppression from EEG signals using data adaptive time domain filtering. Neurocomputing, 97, 297–308.

    Article  Google Scholar 

  20. Nikolova, M. (2011). Energy minimization methods. In Handbook of mathematical methods in imaging (pp. 139–185). New York: Springer.

    Chapter  MATH  Google Scholar 

  21. Parekh, A. & Selesnick, I. W. (2015). Convex fused lasso denoising with non-convex regularization and its use for pulse detection. In IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1–6).

    Google Scholar 

  22. Rockafellar, R. T. (1972). Convex analysis. Princeton: Princeton University Press.

    Google Scholar 

  23. Scholkmann, F., Spichtig, S., Muehlemann, T., & Wolf, M. (2010). How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation. Physiological Measurement, 31(5), 649–662.

    Article  Google Scholar 

  24. Selesnick, I. (2017). Sparse regularization via convex analysis. IEEE Transactions on Signal Processing, 65(17), 4481–4494.

    Article  MathSciNet  MATH  Google Scholar 

  25. Selesnick, I. W., Graber, H. L., Ding, Y., Zhang, T., & Barbour, R. L. (2014). Transient artifact reduction algorithm (TARA) based on sparse optimization. IEEE Transactions on Signal Processing, 62(24), 6596–6611.

    Article  MathSciNet  MATH  Google Scholar 

  26. Selesnick, I. W., Graber, H. L., Pfeil, D. S., & Barbour, R. L. (2014). Simultaneous low-pass filtering and total variation denoising. IEEE Transactions on Signal Processing, 62(5), 1109–1124.

    Article  MathSciNet  MATH  Google Scholar 

  27. Starck, J.-L., Donoho, D., & Elad, M. (2004). Redundant multiscale transforms and their application for morphological component separation. Advances in Imaging and Electron Physics, 132, 287–348.

    Article  Google Scholar 

  28. Thomas, S. (1996). The operation of infimal convolution. Unpublished Doctoral Dissertation, University of Lund.

    MATH  Google Scholar 

  29. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., & Knight, K. (2005). Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(1), 91–108.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Randall Barbour for important discussions. This work was supported by NSF (grant CCF-1525398).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yining Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, Y., Ding, B., Graber, H., Selesnick, I. (2020). Transient Artifacts Suppression in Time Series via Convex Analysis. In: Obeid, I., Selesnick, I., Picone, J. (eds) Signal Processing in Medicine and Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-36844-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36844-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36843-2

  • Online ISBN: 978-3-030-36844-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics