Skip to main content

Controllable Synthesis of Battery-Grade Iron Oxalate with Waste Ferrous Sulfate from Titanium Dioxide Production

  • Conference paper
  • First Online:
Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 1539 Accesses

Abstract

In order to utilize the waste ferrous sulfate from titanium dioxide production effectively, a statistical experimental design was used to optimize the preparation process parameters for synthesis of battery-grade iron oxalate. The controllable synthesis of iron oxalate with different particle size and purity was investigated to further illustrate the effects of various factors on iron oxalate growth. Results show that the reaction temperature plays a key role on both material’s purity and size. The influence of reaction factors can be attributed to the change of thermodynamics and kinetics which leads to the different crystal nucleation and growth process. The model has a well fitted response and a good liner correlation with the data of variance analysis. The analytical results in this paper demonstrate that the preparation of battery-grade iron oxalate is a new way to utilize waste ferrous sulfate, which offers an opportunity for green and safe industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vondruska M, Bednarik V, Sild M (2001) Stabilization/solidification of waste ferrous sulphate from titanium dioxide production by fluidized bed combustion product. Waste Manag 21(1):11–16. https://doi.org/10.1016/S0956-053X(00)00075-1

    Article  CAS  Google Scholar 

  2. Huang P, Deng S, Zhang Z, Wang X, Chen X, Yang X, Yang L (2015) A sustainable process to utilize ferrous sulfate waste from titanium oxide industry by reductive decomposition reaction with pyrite. Thermochim Acta 620:18–27. https://doi.org/10.1016/j.tca.2015.10.004

    Article  CAS  Google Scholar 

  3. Zhu XY, Xu GJ, Liu CH (2011) Upgrading of China’s Titanium Dioxide industry from the perspective of clean production. In: 2011 international conference on remote sensing, environment and transportation engineering, pp 8723–8726. https://doi.org/10.1109/rsete.2011.5964212

  4. Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458(7235):190. https://doi.org/10.1038/nature07853

    Article  CAS  Google Scholar 

  5. Xu B, Qian D, Wang Z, Meng YS (2012) Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng: R: Rep 73(5–6):51–65. https://doi.org/10.1016/j.mser.2012.05.003

    Article  CAS  Google Scholar 

  6. Wang J, Yang J, Zhang Y, Li Y, Tang Y, Banis MN, Sun X (2013) Interaction of carbon coating on LiFePO4: a local visualization study of the influence of impurity phases. Adv Func Mater 23(7):806–814. https://doi.org/10.1002/adfm.201201310

    Article  CAS  Google Scholar 

  7. Wang J, Sun X (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5(1):5163–5185. https://doi.org/10.1039/C1EE01263K

    Article  CAS  Google Scholar 

  8. Yang K, Deng Z, Suo J (2012) Synthesis and characterization of LiFePO4 and LiFePO4/C cathode material from lithium carboxylic acid and Fe3+. J Power Sources 201:274–279. https://doi.org/10.1016/j.jpowsour.2011.11.019

    Article  CAS  Google Scholar 

  9. Hu J, Hu X, Chen A, Zhao S (2014) Directly aqueous synthesis of well-dispersed superparamagnetic Fe3O4 nanoparticles using ionic liquid-assisted co-precipitation method. J Alloy Compd 603:1–6. https://doi.org/10.1016/j.jallcom.2014.02.022

    Article  CAS  Google Scholar 

  10. Wang P, Wang Z, Wu Z (2012) Insights into the effect of preparation variables on morphology and performance of polyacrylonitrile membranes using Plackett-Burman design experiments. Chem Eng J 193:50–58. https://doi.org/10.1016/j.cej.2012.04.017

    Article  CAS  Google Scholar 

  11. Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33(4):305–325. https://doi.org/10.2307/2332195

    Article  Google Scholar 

  12. Sastry SV, Khan MA (1998) Aqueous based polymeric dispersion: Plackett–Burman design for screening of formulation variables of atenolol gastrointestinal therapeutic system. Pharm Acta Helv 73:105–112. https://doi.org/10.1016/s0031-6865(97)00052-6

    Article  CAS  Google Scholar 

  13. Vatanara A, Najafabadi A R, Gilani K, Asgharian R, Darabi M, Rafiee-Tehrani M (2007) A Plackett–Burman design for screening of the operation variables in the formation of salbutamol sulphate particles by supercritical antisolvent. J Supercrit Fluids. 40(1):111–116. https://doi.org/10.1016/j.supflu.2006.03.028

    Article  CAS  Google Scholar 

  14. Zhang K, Yang X, Wu J, Huang X, Yao Y (2016) Optimization of the process parameters for the synthesis process of battery-grade ferrous oxalate by response surface method. NANO 11(11):1650123. https://doi.org/10.1142/S179329201650123X

    Article  CAS  Google Scholar 

  15. Zhang K, Liang F, Wang Y, Dai Y, Yao Y (2019) Multilayer iron oxalate with a mesoporous nanostructure as a high-performance anode material for lithium-ion batteries. J Alloy Compd 779:91–99. https://doi.org/10.1016/j.jallcom.2018.11.011

    Article  CAS  Google Scholar 

  16. Guzun AS, Stroescu M, Jinga SI, Voicu G, Grumezescu AM, Holban AM (2014) Plackett-Burman experimental design for bacterial cellulose–silica composites synthesis. Mater Sci Eng, C 42:280–288. https://doi.org/10.1016/j.msec.2014.05.031

    Article  CAS  Google Scholar 

  17. Elsanhoty RM, Al-Turki IA, Ramadan MF (2012) Screening of medium components by Plackett-Burman design for carotenoid production using date (Phoenix dactylifera) wastes. Ind Crops Prod 36(1):313–320. https://doi.org/10.1016/j.indcrop.2011.10.013

    Article  CAS  Google Scholar 

  18. Rahman Z, Zidan AS, Habib MJ, Khan MA (2010) Understanding the quality of protein loaded PLGA nanoparticles variability by Plackett-Burman design. Int J Pharm 389(1–2):186–194. https://doi.org/10.1016/j.ijpharm.2009.12.040

    Article  CAS  Google Scholar 

  19. Bahloul L, Ismail F, Samar MEH, Meradi H (2014) Removal of AY99 from an aqueous solution using an emulsified liquid membrane. Application of Plackett-Burman design. Energy Procedia 50:1008–1016. https://doi.org/10.1016/j.egypro.2014.06.120

    Article  CAS  Google Scholar 

  20. Veintemillas-Verdaguer S, Esteban SO, Herrero MA (2007) The effect of stirring on sodium chlorate crystallization under symmetry breaking conditions. J Cryst Growth 303(2):562–567. https://doi.org/10.1016/j.jcrysgro.2007.01.014

    Article  CAS  Google Scholar 

  21. Yan FW, Zhang SF, Guo CY, Zhang XH, Chen GC, Yan F, Yuan GQ (2009) Influence of stirring speed on the crystallization of calcium carbonate. Crystal Res Technol: J Exp Ind Crystallogr 44(7):725–728. https://doi.org/10.1002/crat.200900190

    Article  CAS  Google Scholar 

  22. He M, Addai-Mensah J, Beattie D (2009) The influence of polymeric dispersants on sericite–chalcocite particle interactions in aqueous media. Chem Eng J 152(2–3):471–479. https://doi.org/10.1016/j.cej.2009.05.010

    Article  CAS  Google Scholar 

  23. Loginov M, Larue O, Lebovka N, Vorobiev E (2008) Fluidity of highly concentrated kaolin suspensions: influence of particle concentration and presence of dispersant. Colloids Surf A 325(1–2):64–71. https://doi.org/10.1016/j.colsurfa.2008.04.040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51364021) and the Program for Innovative Research Team at the University of Ministry of Education of China (No. IRT_17R48).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaochun Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, K., Li, Y., Wei, R., Wang, Y., Dai, Y., Yao, Y. (2020). Controllable Synthesis of Battery-Grade Iron Oxalate with Waste Ferrous Sulfate from Titanium Dioxide Production. In: Chen, X., et al. Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36830-2_24

Download citation

Publish with us

Policies and ethics