Skip to main content

An Introduction to Special Functions with Some Applications to Quantum Mechanics

  • Conference paper
  • First Online:
Orthogonal Polynomials (AIMSVSW 2018)

Abstract

A short review on special functions and solution of the Coulomb problems in quantum mechanics is given. Multiparameter wave functions of linear harmonic oscillator, which cannot be obtained by the standard separation of variables, are discussed. Expectation values in relativistic Coulomb problems are studied by computer algebra methods.

Dedicated to the memory of Professor Arnold F. Nikiforov and Professor Vasilii B. Uvarov

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.S. Adkins, Dirac-Coulomb energy levels and expectation values. Am. J. Phys. 76(6), 579–584 (2008). https://doi.org/10.1119/1.2830535

    Article  Google Scholar 

  2. A.I. Akhiezer, V.B. Berestetskii, Quantum Electrodynamics. Interscience Monographs and Texts in Physics and Astronomy, vol. 11 (Interscience Publishers, New York, 1965). Translated from the Russian edition (Moscow, ed. 2, 1959) by A. Sen and R. N. Sen. Israel Program for Scientific Translations, Jerusalem

    Google Scholar 

  3. V. Aldaya, F. Cossío, J. Guerrero, F.F. López-Ruiz, The quantum Arnold transformation. J. Phys. A Math. Theor. 44(6), 065302 (2011). https://doi.org/10.1088/1751-8113/44/6/065302

  4. R.L. Anderson, S. Kumei, C.E. Wulfman, Invariants of the equations of wave mechanics I. Rev. Mex. Fís. 21(1), 1–33 (1972)

    MathSciNet  Google Scholar 

  5. R.L. Anderson, S. Kumei, C.E. Wulfman, Invariants of the equations of wave mechanics II. One-particle Schrödinger equations. Rev. Mex. Fís. 21(1), 35–57 (1972)

    Google Scholar 

  6. D. Andrae, Recursive evaluation of expectation values 〈r k〉 for arbitrary states of the relativistic one–electron atom. J. Phys. B Atom. Mol. Phys. 30(20), 4435–4451 (1997). https://doi.org/10.1088/0953-4075/30/20/008

    Article  Google Scholar 

  7. G.E. Andrews, R. Askey, Classical orthogonal polynomials, in Polynômes Orthogonaux et Applications, ed. by C. Brezinski, A. Draux, A.P. Magnus, P.M. Ronveaux. Lecture Notes in Mathematics, vol. 1171 (Springer, Berlin, 1985), pp. 36–62. https://doi.org/10.1007/BFb0076530

  8. G.E. Andrews, R. Askey, R. Roy, Special Functions. Encyclopedia of Mathematics and Its Applications, vol. 71 (Cambridge University Press, Cambridge, 1999). https://doi.org/10.1017/CBO9781107325937

  9. R. Askey, Orthogonal Polynomials and Special Functions. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. CB21 (Society for Industrial and Applied Mathematics, Philadelphia, 1975). https://doi.org/10.1137/1.9781611970470

  10. R. Askey, Continuous Hahn polynomials. J. Phys. A Math. Gen. 18(16), L1017–L1019 (1985). https://doi.org/10.1088/0305-4470/18/16/004

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Askey, J. Wilson, A set of hypergeometric orthogonal polynomials. SIAM J. Math. Anal. 13(4), 651–655 (1982). https://doi.org/10.1137/0513043

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Askey, J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 54(319), iv+55 (1985). https://doi.org/10.1090/memo/0319

  13. N.M. Atakishiyev, S.K. Suslov, The Hahn and Meixner polynomials of an imaginary argument and some of their applications. J. Phys. A Math. Gen. 18(10), 1583–1596 (1985). https://doi.org/10.1088/0305-4470/18/10/014

    Article  MathSciNet  MATH  Google Scholar 

  14. N.M. Atakishiyev, S.K. Suslov, On the moments of classical and related polynomials. Rev. Mex. Fís. 34(2), 147–151 (1988)

    MathSciNet  MATH  Google Scholar 

  15. N.M. Atakishiyev, S.K. Suslov, Difference hypergeometric functions, in Progress in Approximation Theory, ed. by A.A. Gonchar, E.B. Saff. Computational Mathematics Book Series, vol. 19 (Springer, New York, 1992), pp. 1–35. https://doi.org/10.1007/978-1-4612-2966-7_1

  16. W.N. Bailey, Generalized Hypergeometric Series. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 32 (Cambridge University Press, London, 1935)

    Google Scholar 

  17. S. Balasubramanian, Note on Feynman’s theorem. Am. J. Phys. 52(12), 1143–1144 (1984). https://doi.org/10.1119/1.13746

    Article  Google Scholar 

  18. S. Balasubramanian, A note on the generalized Hellmann-Feynman theorem. Am. J. Phys. 58(12), 1204–1205 (1990). https://doi.org/10.1119/1.16254

    Article  Google Scholar 

  19. V. Bargmann, Zur Theorie des Wasserstoffatoms. Z. Phys. 98(7), 576–582 (1936). https://doi.org/10.1007/BF01338811

    Google Scholar 

  20. H. Bateman, Some properties of a certain set of polynomials. Tôhoku Math. J. First Ser. 37, 23–38 (1933)

    MATH  Google Scholar 

  21. H. Bateman, Functions orthogonal in the Hermitian sense. A new application of basic numbers. Proc. Natl. Acad. Sci. 20(1), 63–66 (1934). https://doi.org/10.1073/pnas.20.1.63

    Article  MATH  Google Scholar 

  22. H. Bateman, The polynomial F n(x). Ann. Math. 35, 767–775 (1934). https://doi.org/10.2307/1968493

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Bateman, The polynomial F n(x) and its relation to other functions. Ann. Math. 38(2), 303–310 (1937). https://doi.org/10.2307/1968555

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Bateman, An orthogonal property of the hypergeometric polynomial. Proc. Natl. Acad. Sci. 28(9), 374–377 (1942). https://doi.org/10.1073/pnas.28.9.374

    Article  MathSciNet  MATH  Google Scholar 

  25. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Relativistic quantum theory: part 1, in Course of Theoretical Physics, vol. 4, 1st edn. (Pergamon Press, Oxford, 1971). Translated from the Russian by J. B. Sykes and J. S. Bell

    Google Scholar 

  26. M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A Math. Phys. Sci. 392(1802), 45–57 (1984). https://doi.org/10.1098/rspa.1984.0023

    MathSciNet  MATH  Google Scholar 

  27. M.V. Berry, Classical adiabatic angles and quantal adiabatic phase. J. Phys. A Math. Gen. 18(1), 15–27 (1985). https://doi.org/10.1088/0305-4470/18/1/012

    Article  MathSciNet  MATH  Google Scholar 

  28. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer, Berlin, 1957). https://doi.org/10.1007/978-3-662-12869-5

    Book  MATH  Google Scholar 

  29. L.C. Biedenharn, The “Sommerfeld Puzzle” revisited and resolved. Found. Phys. 13(1), 13–34 (1983). https://doi.org/10.1007/BF01889408

    Article  MathSciNet  Google Scholar 

  30. J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics. International Series in Pure and Applied Physics (McGraw-Hill Book, New York, 1964)

    Google Scholar 

  31. N.N. Bogolíùbov, D.V. Shirkov, Introduction to the Theory of Quantized Fields, 3rd edn. (Wiley, New York, 1980)

    Google Scholar 

  32. G. Boole, A Treatise on the Calculus of Finite Differences, ed. by J.F. Moulton. Dover Books on Advanced Mathematics (MacMillan and Company, New York, 1872)

    Google Scholar 

  33. G. Boole, A Treatise on Differential Equations, 5th edn. (Chelsea Publishing Company, New York, 1959)

    Google Scholar 

  34. C.P. Boyer, R.T. Sharp, P. Winternitz, Symmetry breaking interactions for the time dependent Schrödinger equation. J. Math. Phys. 17(8), 1439–1451 (1976). https://doi.org/10.1063/1.523068

    Article  MATH  Google Scholar 

  35. F. Brafman, On Touchard polynomials. Can. J. Math. 9, 191–193 (1957). https://doi.org/10.4153/CJM-1957-022-6

    Article  MathSciNet  MATH  Google Scholar 

  36. G. Breit, Possible effects of nuclear spin on X-ray terms. Phys. Rev. 35(12), 1447–1451 (1930). https://doi.org/10.1103/PhysRev.35.1447

    Article  MATH  Google Scholar 

  37. G. Breit, G.E. Brown, Effect of nuclear motion on the fine structure of hydrogen. Phys. Rev. 74(10), 1278–1284 (1948). https://doi.org/10.1103/PhysRev.74.1278

    Article  MATH  Google Scholar 

  38. T.J.I. Bromwich, An Introduction to the Theory of Infinite Series, 2nd edn. (MacMillan, London, 1965)

    Google Scholar 

  39. G.E. Brown, Note on a relation in Dirac’s theory of the electron. Proc. Natl. Acad. Sci. 36(1), 15–17 (1950). https://doi.org/10.1073/pnas.36.1.15

    Article  MathSciNet  MATH  Google Scholar 

  40. V.M. Burke, I.P. Grant, The effect of relativity on atomic wave functions. Proc. Phys. Soc. 90(2), 297–314 (1967). https://doi.org/10.1088/0370-1328/90/2/301

    Article  Google Scholar 

  41. L. Carlitz, Some polynomials of Touchard connected with the Bernoulli numbers. Can. J. Math. 9, 188–190 (1957). https://doi.org/10.4153/CJM-1957-021-9

    Article  MathSciNet  MATH  Google Scholar 

  42. L. Carlitz, Bernoulli and Euler numbers and orthogonal polynomials. Duke Math. J. 26(1), 1–15 (1959). https://doi.org/10.1215/s0012-7094-59-02601-8

    Article  MathSciNet  MATH  Google Scholar 

  43. D.C. Cassidy, Uncertainty: The Life and Science of Werner Heisenberg (W. H. Freeman, New York, 1991). http://www.aip.org/history/heisenberg/p08.htm

    Google Scholar 

  44. R. Cordero-Soto, E. Suazo, S.K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians. Ann. Phys. 325(9), 1884–1912 (1981). https://doi.org/10.1016/j.aop.2010.02.020

    Article  MathSciNet  MATH  Google Scholar 

  45. R. Cordero-Soto, R.M. López, E. Suazo, S.K. Suslov, Propagator of a charged particle with a spin in uniform magnetic and perpendicular electric fields. Lett. Math. Phys. 84(2–3), 159–178 (2008). https://doi.org/10.1007/s11005-008-0239-6

    Article  MathSciNet  MATH  Google Scholar 

  46. E.A. Cornell, C.E. Wieman, Nobel lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002). https://doi.org/10.1103/RevModPhys.74.875

    Article  Google Scholar 

  47. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999). https://doi.org/10.1103/RevModPhys.71.463

    Article  Google Scholar 

  48. C.G. Darwin, The wave equations of the electron. Proc. R. Soc. A Math. Phys. Eng. Sci. 118(780), 654–680 (1928). https://doi.org/10.1098/rspa.1928.0076

    MATH  Google Scholar 

  49. L. Davis, A note on the wave functions of the relativistic hydrogenic atom. Phys. Rev. 56, 186–187 (1939). https://doi.org/10.1103/PhysRev.56.186

    Article  MATH  Google Scholar 

  50. A.S. Davydov, Quantum Mechanics (Pergamon Press, Oxford, 1965)

    Google Scholar 

  51. Y.N. Demkov, Channeling, superfocusing, and nuclear reactions. Phys. At. Nucl. 72(5), 779–785 (2009). https://doi.org/10.1134/s1063778809050056

    Article  Google Scholar 

  52. Y.N. Demkov, J.D. Meyer, A sub-atomic microscope, superfocusing in channeling and close encounter atomic and nuclear reactions. Eur. Phys. J. B 42(3), 361–365 (2004). https://doi.org/10.1140/epjb/e2004-00391-6

    Article  Google Scholar 

  53. P.A.M. Dirac, The quantum theory of the electron. Proc. R. Soc. Lond. A 117(778), 610–624 (1928). https://doi.org/10.1098/rspa.1928.0023

    Article  MATH  Google Scholar 

  54. P.A.M. Dirac, The quantum theory of the electron. Part II. Proc. R. Soc. Lond. 118(779), 351–361 (1928). https://doi.org/10.1098/rspa.1928.0056

    MATH  Google Scholar 

  55. P.A.M. Dirac, The Principles of Quantum Mechanics. International Series of Monographs on Physics, vol. 27, 3rd edn. (Clarendon Press, Oxford, 1947)

    Google Scholar 

  56. V.V. Dodonov, Current status of the dynamical Casimir effect. Phys. Scr. 82(3), 38105 (2010). https://doi.org/10.1088/0031-8949/82/03/038105

  57. V.V. Dodonov, V.I. Man’ko, Invariants and the evolution of nonstationary quantum system (in Russian), in Proceedings of Lebedev Physics Institute, vol. 183 (Nauka, Moscow, 1989), pp. 71–181; English translation published by Nova Science, Commack, New York, 1989, pp. 103–261

    Google Scholar 

  58. V.V. Dodonov, I.A. Malkin, V.I. Man’ko, Integrals of the motion, Green functions, and coherent states of dynamical systems. Int. J. Theor. Phys. 14(1), 37–54 (1975). https://doi.org/10.1007/BF01807990

    Article  MathSciNet  Google Scholar 

  59. V.V. Dodonov, A.B. Klimov, D.E. Nikonov, Quantum phenomena in nonstationary media. Phys. Rev. A 47(5), 4422–4429 (1993). https://doi.org/10.1103/PhysRevA.47.4422

    Article  Google Scholar 

  60. J. Dorling, Energy levels of the hydrogen atom as a relativistic clock-retardation effect? Am. J. Phys. 38(4), 510–512 (1970). https://doi.org/10.1119/1.1976376

    Article  Google Scholar 

  61. V.A. Dulock, H.V. McIntosh, On the degeneracy of the Kepler problem. Pac. J. Math. 19(1), 39–55 (1966). https://doi.org/10.2140/pjm.1966.19.39

    Article  MathSciNet  MATH  Google Scholar 

  62. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1953)

    MATH  Google Scholar 

  63. P. Ehrenfest, Bemerkung über die angenä herte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik (in German). Z. Phys. 45(7), 455–457 (1927). https://doi.org/10.1007/BF01329203

    Article  MATH  Google Scholar 

  64. S.T. Epstein, A differential equation for the energy eigenvalues of relativistic hydrogenic atoms, and its solution. Am. J. Phys. 44(3), 251–252 (1976). https://doi.org/10.1119/1.10466

    Article  Google Scholar 

  65. J.H. Epstein, S.T. Epstein, Some applications of hypervirial theorems to the calculation of average values. Am. J. Phys. 30(4), 266–268 (1962). https://doi.org/10.1119/1.1941987

    Article  MathSciNet  MATH  Google Scholar 

  66. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, Vols. I–III. Robert E. Krieger, Melbourne (1981). Based on notes left by Harry Bateman, With a preface by Mina Rees, With a foreword by E. C. Watson, Reprint of the 1953 original

    Google Scholar 

  67. V.P. Ermakov, Second-order differential equations: conditions of complete integrability. Appl. Anal. Discrete Math. 2(2), 123–145 (2008). https://doi.org/10.2298/AADM0802123E

    Article  MathSciNet  MATH  Google Scholar 

  68. L.D. Faddeev, The Feynman integral for singular Lagrangians (in Russian). Theor. Math. Phys. 1(1), 1–13 (1969). https://doi.org/10.1007/BF01028566

    Article  MATH  Google Scholar 

  69. P.O. Fedichev, Y. Kagan, G.V. Shlyapnikov, J.T.M. Walraven, Influence of nearly resonant light on the scattering length in low-temperature atomic gases. Phys. Rev. Lett. 77, 2913–2916 (1996). https://doi.org/10.1103/PhysRevLett.77.2913

    Article  Google Scholar 

  70. E. Fermi, Quantum theory of radiation. Rev. Mod. Phys. 4, 87–132 (1932). https://doi.org/10.1103/RevModPhys.4.87

    Article  MATH  Google Scholar 

  71. E. Fermi, Notes on Quantum Mechanics. Phoenix Science, vol. 512 (University of Chicago Press, Chicago, 1961)

    Google Scholar 

  72. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals. International Series in Pure and Applied Physics (McGraw–Hill Book, New York, 1984)

    Google Scholar 

  73. S. Flügge, Practical Quantum Mechanics. Classics in Mathematics, vol. 177 (Springer, Berlin, 1999). https://doi.org/10.1007/978-3-642-61995-3

  74. V. Fock, Bemerkung zum Virialsatz. Z. Phys. 63(11), 855–858 (1930). https://doi.org/10.1007/BF01339281

    Google Scholar 

  75. V. Fock, Zur theorie des Wasserstoffatoms. Z. Phys. 98(3), 145–154 (1935). https://doi.org/10.1007/BF01336904

    Article  MATH  Google Scholar 

  76. J.L. Friar, J.W. Negele, Hypervirial theorems for the Dirac equation. Phys. Rev. C 13, 1338–1340 (1976). https://doi.org/10.1103/PhysRevC.13.1338

    Article  Google Scholar 

  77. T. Fujii, S. Matsuo, N. Hatakenaka, S. Kurihara, A. Zeilinger, Quantum circuit analog of the dynamical Casimir effect. Phys. Rev. B 84, 174521 (2011). https://doi.org/10.1103/PhysRevB.84.174521

    Article  Google Scholar 

  78. R.H. Garstang, D.F. Mayers, Screening constants for relativistic wave functions. Math. Proc. Camb. Philos. Soc. 62(4), 777–782 (1966). https://doi.org/10.1017/S0305004100040482

    Article  Google Scholar 

  79. G. Gasper, M. Rahman, Basic hypergeometric series, in Encyclopedia of Mathematics and its Applications, vol. 96, 2nd edn. (Cambridge University Press, Cambridge, 2004). https://doi.org/10.1017/CBO9780511526251

  80. J.L. Geronimus, Orthogonal polynomials, in Two Papers on Special Functions, ed. by J.L. Geronimus, G. Szegö. American Mathematical Society Translations, vol. 108, chap. 3 (American Mathematical Society, Providence, 1977), pp. 37–130. https://doi.org/10.1090/trans2/108

  81. S.P. Goldman, G.W.F. Drake, Relativistic sum rules and integral properties of the Dirac equation. Phys. Rev. A 25, 2877–2881 (1982). https://doi.org/10.1103/PhysRevA.25.2877

    Article  MathSciNet  Google Scholar 

  82. I.I. Gol’dman, V.D. Krivchenkov, B.T. Geĭlikman, Problems in Quantum Mechanics (Dover Publications, New York, 1993)

    Google Scholar 

  83. W. Gordon, Die Energieniveaus des Wasserstoffatoms nach der Diracshen Quantentheorie des Elektrons (in German). Z. Phys. 48(1), 11–14 (1928). https://doi.org/10.1007/BF01351570

    Article  MATH  Google Scholar 

  84. J. Guerrero, F.F. López-Ruiz, V. Aldaya, F. Cossío, Harmonic states for the free particle. J. Phys. A Math. Theor. 44(44), 445307 (2011). https://doi.org/10.1088/1751-8113/44/44/445307

  85. A. Gumberidze, T. Stöhlker, D. Banaś, K. Beckert, P. Beller, H.F. Beyer, F. Bosch, S. Hagmann, C. Kozhuharov, D. Liesen, F. Nolden, X. Ma, P.H. Mokler, M. Steck, D. Sierpowski, S. Tashenov, Quantum electrodynamics in strong electric fields: the ground-state Lamb shift in hydrogenlike uranium. Phys. Rev. Lett. 94, 223001 (2005). https://doi.org/10.1103/PhysRevLett.94.223001

    Article  Google Scholar 

  86. A. Gumberidze, T. Stöhlker, D. Banaś, K. Beckert, P. Beller, H.F. Beyer, F. Bosch, X. Cai, S. Hagmann, C. Kozhuharov, D. Liesen, F. Nolden, X. Ma, P.H. Mokler, M. Steck, D. Sierpowski, S. Tashenov, A. Warczak, Y. Zou, Precision tests of QED in strong fields: experiments on hydrogen- and helium-like uranium. J. Phys. Conf. Ser. 58, 87–92 (2007). https://doi.org/10.1088/1742-6596/58/1/013

    Article  Google Scholar 

  87. C.R. Hagen, Scale and conformal transformations in Galilean-covariant field theory. Phys. Rev. D 5, 377–388 (1972). https://doi.org/10.1103/PhysRevD.5.377

    Article  Google Scholar 

  88. G. Harari, Y. Ben-Aryeh, A. Mann, Propagator for the general time-dependent harmonic oscillator with application to an ion trap. Phys. Rev. A 84, 062104 (2011). https://doi.org/10.1103/PhysRevA.84.062104

    Article  Google Scholar 

  89. G.H. Hardy, Notes on special systems of orthogonal functions (III): a system of orthogonal polynomials. Math. Proc. Camb. Philos. Soc. 36(1), 1–8 (1940). https://doi.org/10.1017/S0305004100016947

    Article  MathSciNet  MATH  Google Scholar 

  90. S. Haroche, J.M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (Oxford University Press, Oxford, 2006). https://doi.org/10.1093/acprof:oso/9780198509141.001.0001

    Book  MATH  Google Scholar 

  91. D.R. Hartree, The Calculation of Atomic Structures. Structure of Matter Series (Wiley, New York, 1957)

    MATH  Google Scholar 

  92. W. Heisenberg, The Physical Principles of the Quantum Theory. Dover Books on Physics and Chemistry (University of Chicago Press/Dover Publications, Chicago/New York 1930/1940)

    Google Scholar 

  93. W. Heisenberg, Physics and Philosophy: The Revolution in Modern Science. Lectures Delivered at University of St. Andrews, Scotland, Winter 1955–1956 (Harper and Row, New York, 1958). http://www.aip.org/history/heisenberg/p13e.htm.

  94. R.W. Henry, S.C. Glotzer, A squeezed-state primer. Am. J. Phys. 56(4), 318–328 (1988). https://doi.org/10.1119/1.15631

    Article  MathSciNet  Google Scholar 

  95. M.E.H. Ismail, D.R. Masson, M. Rahman, Complex weight functions for classical orthogonal polynomials. Can. J. Math. 43(6), 1294–1308 (1991). https://doi.org/10.4153/CJM-1991-074-8

    Article  MathSciNet  MATH  Google Scholar 

  96. C. Itzykson, J. Zuber, Quantum Field Theory. Dover Books on Physics (Dover Publications, New York, 2005)

    Google Scholar 

  97. R. Jackiw, Dynamical symmetry of the magnetic monopole. Ann. Phys. 129(1), 183–200 (1980). https://doi.org/10.1016/0003-4916(80)90295-X

    Article  MathSciNet  Google Scholar 

  98. E.G. Kalnins, W. Miller, Lie theory and separation of variables. 5. The equations iU t + U xx = 0 and iU t + U xx − cx 2U = 0. J. Math. Phys. 15(10), 1728–1737 (1974). https://doi.org/10.1063/1.1666533

  99. S.G. Karshenboim, V.B. Smirnov, Precision Physics of Simple Atomic Systems. Lecture Notes in Physics, vol. 627 (Springer, Berlin, 2003). https://doi.org/10.1007/b13865

  100. S.G. Karshenboim, F. Bassani, F. Pavone, M. Inguscio, T. Hänsch, The Hydrogen Atom: Precision Physics of Simple Atomic Systems. Lecture Notes in Physics, vol. 570 (Springer, Berlin, 2001). https://doi.org/10.1007/3-540-45395-4

  101. I.B. Khriplovich, Fundamental symmetries and atomic physics. Phys. Scr. T112(1), 52–62 (2004). https://doi.org/10.1238/physica.topical.112a00052

    Article  Google Scholar 

  102. Y.S. Kivshar, T.J. Alexander, S.K. Turitsyn, Nonlinear modes of a macroscopic quantum oscillator. Phys. Lett. A 278(4), 225–230 (2001). https://doi.org/10.1016/S0375-9601(00)00774-X

    Article  MathSciNet  MATH  Google Scholar 

  103. R. Koekoek, P.A. Lesky, R.F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer Monographs in Mathematics (Springer, Berlin, 2010). https://doi.org/10.1007/978-3-642-05014-5

  104. H.T. Koelink, On Jacobi and continuous Hahn polynomials. Proc. Am. Math. Soc. 124(3), 887–898 (1996). https://doi.org/10.1090/S0002-9939-96-03190-5

    Article  MathSciNet  MATH  Google Scholar 

  105. F. Köhler-Langes, The Electron Mass and Calcium Isotope Shifts: High-Precision Measurements of Bound-Electron g-Factors of Highly Charged Ions. Springer Theses (Springer, Berlin, 2017). https://doi.org/10.1007/978-3-319-50877-1

    Book  Google Scholar 

  106. C. Koutschan (2019). https://math.la.asu.edu/~suslov/curres/index.htm. See Mathematica notebook: Koutschan.nb.

  107. C. Koutschan, P. Paule, S.K. Suslov, Relativistic Coulomb integrals and Zeilberger’s holonomic systems approach II, in Algebraic and Algorithmic Aspects of Differential and Integral Operators, ed. by M. Barkatou, T. Cluzeau, G. Regensburger, M. Rosenkranz. Lecture Notes in Computer Science; AADIOS 2012, vol. 8372 (Springer, Berlin, 2014), pp. 135–145. https://doi.org/10.1007/978-3-642-54479-8_6

  108. C. Koutschan, E. Suazo, S.K. Suslov, Fundamental laser modes in paraxial optics: from computer algebra and simulations to experimental observation. Appl. Phys. B 121(3), 315–336 (2015). https://doi.org/10.1007/s00340-015-6231-9

    Article  Google Scholar 

  109. C. Krattenthaler, S.I. Kryuchkov, A. Mahalov, S.K. Suslov, On the problem of electromagnetic-field quantization. Int. J. Theor. Phys. 52(12), 4445–4460 (2013). https://doi.org/10.1007/s10773-013-1764-3

    Article  MATH  Google Scholar 

  110. S.I. Kryuchkov, S.K. Suslov, J.M. Vega-Guzmán, The minimum-uncertainty squeezed states for atoms and photons in a cavity. J. Phys. B Atom. Mol. Opt. Phys. 46(10), 104007 (2013). https://doi.org/10.1088/0953-4075/46/10/104007 (IOP=Institute Of Physics SELECT and HIGHLIGHT for 2013)

  111. S.I. Kryuchkov, N.A. Lanfear, S.K. Suslov, The role of the Pauli-Lubański vector for the Dirac, Weyl, Proca, Maxwell and Fierz-Pauli equations. Phys. Scr. 91(3), 035301 (2016). https://doi.org/10.1088/0031-8949/91/3/035301

  112. S.I. Kryuchkov, E. Suazo, S.K. Suslov, Time-dependent photon statistics in variable media. Math. Methods Appl. Sci. (2018). https://doi.org/10.1002/mma.5285

  113. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, 3rd edn. (Butterworth-Heinemann, Pergamon, 1977). https://doi.org/10.1016/C2013-0-02793-4

    MATH  Google Scholar 

  114. N. Lanfear, S.K. Suslov, The time-dependent Schrödinger groups equation, Riccati equation and Airy functions. arXiv e-prints (2009), pp. 1–28

    Google Scholar 

  115. N. Lanfear, R.M. López, S.K. Suslov, Exact wave functions for generalized harmonic oscillators. J. Russ. Laser Res. 32(4), 352–361 (2011). https://doi.org/10.1007/s10946-011-9223-1

    Article  Google Scholar 

  116. P. Leach, S. Andriopoulos, The Ermakov equation: a commentary. Appl. Anal. Discrete Math. 2(2), 146–157 (2008). https://doi.org/10.2298/AADM0802146L

    Article  MathSciNet  MATH  Google Scholar 

  117. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75(1), 281–324 (2003). https://doi.org/10.1103/RevModPhys.75.281

    Article  Google Scholar 

  118. U. Leonhardt, H. Paul, Measuring the quantum state of light. Prog. Quant. Electron. 19(2), 89–130 (1995). https://doi.org/10.1016/0079-6727(94)00007-L

    Article  Google Scholar 

  119. H.R. Lewis, W.B. Riesenfeld, An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10(8), 1458–1473 (1969). https://doi.org/10.1063/1.1664991

    Article  MathSciNet  MATH  Google Scholar 

  120. R. López, S. Suslov, The Cauchy problem for a forced harmonic oscillator. Revista Mexicana de Física 55, 196–215 (2009)

    MathSciNet  Google Scholar 

  121. R.M. López, S.K. Suslov, J.M. Vega-Guzmán, On a hidden symmetry of quantum harmonic oscillators. J. Differ. Equ. Appl. 19(4), 543–554 (2013). https://doi.org/10.1080/10236198.2012.658384

    Article  MathSciNet  MATH  Google Scholar 

  122. R.M. López, S.K. Suslov, J.M. Vega-Guzmán, Reconstructing the Schrödinger groups. Phys. Scr. 87(3), 038112 (2013). https://doi.org/10.1088/0031-8949/87/03/038112

  123. R.M. López, S.K. Suslov, J. Vega-Guzmán (2019). https://math.la.asu.edu/~suslov/curres/index.htm. See Mathematica notebook: HarmonicOscillatorGroup.nb

  124. I.A. Malkin, V.I. Man’ko, Dynamic Symmetry and Coherent States of Quantum Systems (in Russian) (Nauka, Moscow, 1979)

    Google Scholar 

  125. N.H. March, The viral theorem for Dirac’s equation. Phys. Rev. 92(2), 481–482 (1953). https://doi.org/10.1103/PhysRev.92.481

    Article  MathSciNet  MATH  Google Scholar 

  126. H. Margenau, Relativistic magnetic moment of a charged particle. Phys. Rev. 57(5), 383–386 (1940). https://doi.org/10.1103/PhysRev.57.383

    Article  Google Scholar 

  127. M.E. Marhic, Oscillating Hermite-Gaussian wave functions of the harmonic oscillator. Lettere al Nuovo Cimento (1971–1985) 22(9), 376–378 (1978). https://doi.org/10.1007/BF02820587

  128. R.P. Martínez-y-Romero, Relativistic hydrogen atom revisited. Am. J. Phys. 68(11), 1050–1055 (2000). https://doi.org/10.1119/1.1286314

    Article  Google Scholar 

  129. R.J. McKee, μ-Atomic hyperfine structure in the K, L, and M lines of U238 and Th232. Phys. Rev. 180(4), 1139–1158 (1969). https://doi.org/10.1103/PhysRev.180.1139

  130. W.A. McKinley, Hellmann-Feynman theorems in classical and quantum mechanics. Am. J. Phys. 39(8), 905–910 (1971). https://doi.org/10.1119/1.1986322

    Article  Google Scholar 

  131. M. Meiler, R. Cordero-Soto, S.K. Suslov, Solution of the Cauchy problem for a time-dependent Schrödinger equation. J. Math. Phys. 49(7), 072102 (2008). https://doi.org/10.1063/1.2938698

  132. E. Merzbacher, Quantum Mechanics, 3rd edn. (Wiley, Hoboken, 1998)

    MATH  Google Scholar 

  133. A. Messiah, Quantum Mechanics: Two Volumes Bound as One. Dover Books on Physics (Dover Publications, New York, 1999)

    Google Scholar 

  134. W. Miller, Symmetry and Separation of Variables. Encyclopedia of Mathematics and its Applications, vol. 4 (Cambridge University Press, Cambridge, 1984). https://doi.org/10.1017/CBO9781107325623

  135. P.J. Mohr, G. Plunien, G. Soff, QED corrections in heavy atoms. Phys. Rep. 293(5), 227–369 (1998). https://doi.org/10.1016/S0370-1573(97)00046-X

    Article  Google Scholar 

  136. U. Niederer, The maximal kinematical invariance group of the free Schrödinger equations. Helv. Phys. Acta 45(5), 802–810 (1972). https://doi.org/10.5169/seals-114417

    MathSciNet  Google Scholar 

  137. U. Niederer, The maximal kinematical invariance group of the harmonic oscillator. Helv. Phys. Acta 46(2), 191–200 (1973). https://doi.org/10.5169/seals-114478

    MathSciNet  Google Scholar 

  138. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics: A Unified Introduction with Applications (Birkhäuser, Boston, 1988). https://doi.org/10.1007/978-1-4757-1595-8_1

    Book  MATH  Google Scholar 

  139. A.F. Nikiforov, S.K. Suslov, V.B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable. Springer Series in Computational Physics (Springer, Berlin, 1991). https://doi.org/10.1007/978-3-642-74748-9

  140. A.F. Nikiforov, V.G. Novikov, V.B. Uvarov, Quantum-Statistical Models of Hot Dense Matter: Methods for Computation Opacity and Equation of State. Progress in Mathematical Physics, vol. 37 (Birkhäuser, Basel, 2005). https://doi.org/10.1007/b137687

  141. S. Pasternack, On the mean value of r s for Keplerian systems. Proc. Natl. Acad. Sci. 23(2), 91–94 (1937). https://doi.org/10.1073/pnas.23.2.91

    Article  MATH  Google Scholar 

  142. S. Pasternack, A generalization of the polynomial F n(x). Lond. Edinburgh Dublin Philos. Mag. J. Sci. 28(187), 209–226 (1939). https://doi.org/10.1080/14786443908521175

    Article  MathSciNet  MATH  Google Scholar 

  143. P. Paule, S.K. Suslov, Relativistic Coulomb integrals and Zeilberger’s holonomic systems approach. I, in Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, Texts & Monographs in Symbolic Computation, ed. by C. Schneider, J. Blümlein (Springer, Vienna, 2013), pp. 225–241. https://doi.org/10.1007/978-3-7091-1616-6_9

    Chapter  Google Scholar 

  144. L. Pitaevskii, S. Stringari, Bose-Einstein Condensation, Illustrated. International Series of Monographs on Physics, reprint edn. (A Clarendon Press, Oxford, 2003)

    Google Scholar 

  145. P. Pyykkö, E. Pajanne, M. Inokuti, Hydrogen-like relativistic corrections for electric and magnetic hyperfine integrals. Int. J. Quant. Chem. 7(4), 785–806 (1973). https://doi.org/10.1002/qua.560070415

    Article  Google Scholar 

  146. W.C. Qiang, S.H. Dong, Radial position–momentum uncertainties for the Dirac hydrogen-like atoms. J. Phys. A Math. Gen. 39(27), 8663–8673 (2006). https://doi.org/10.1088/0305-4470/39/27/007

    Article  MathSciNet  MATH  Google Scholar 

  147. D. Rainville, Special Functions. AMS Chelsea Publishing Series (Chelsea Publishing Company, Hartford, 1971)

    MATH  Google Scholar 

  148. M.E. Rose, Elementary Theory of Angular Momentum. Dover Books on Physics and Chemistry (Wiley, New York, 1957); reprinted by Dover, New York (1995)

    Google Scholar 

  149. M.E. Rose, Relativistic Electron Theory, 1st edn. (Wiley, New York, 1961)

    MATH  Google Scholar 

  150. M.E. Rose, T.A. Welton, The virial theorem for a Dirac particle. Phys. Rev. Lett. 86(3), 432–433 (1952). https://doi.org/10.1103/PhysRev.86.432.2

    MathSciNet  MATH  Google Scholar 

  151. S.I. Rosencrans, Perturbation algebra of an elliptic operator. J. Math. Anal. Appl. 56(2), 317–329 (1976). https://doi.org/10.1016/0022-247X(76)90045-7

    Article  MathSciNet  MATH  Google Scholar 

  152. F. Rosicky, F. Mark, The relativistic virial theorem by the elimination method and nonrelativistic approximations to this theorem. J. Phys. B Atom. Mol. Phys. 8(16), 2581–2587 (1975). https://doi.org/10.1088/0022-3700/8/16/014

    Article  Google Scholar 

  153. P. Rusev, Analytic Functions and Classical Orthogonal Polynomials. Bulgarian Mathematical Monographs, vol. 3 (Publishing House of the Bulgarian Academy of Sciences, Sofia, 1984). With a Russian summary

    Google Scholar 

  154. B. Sanborn, S.K. Suslov, L. Vinet, Dynamic invariants and the Berry phase for generalized driven harmonic oscillators. J. Russ. Laser Res. 32(5), 486–494 (2011). https://doi.org/10.1007/s10946-011-9238-7

    Article  Google Scholar 

  155. R.M. Schectman, R.H. Good, Generalizations of the virial theorem. Am. J. Phys. 25(4), 219–225 (1957). https://doi.org/10.1119/1.1934404

    Article  MATH  Google Scholar 

  156. L.I. Schiff, Quantum Mechanics. International Series in Pure and Applied Physics, 3rd edn. (McGraw-Hill, New York, 1968)

    Google Scholar 

  157. E. Schrödinger, Der stetige Übergang von der Mikro-zur Makro Mechanik (in German). Naturwissenschaften 14(28), 664–666 (1926). https://doi.org/10.1007/BF01507634. http://www.nobelprize.org/nobel{_}prizes/physics/laureates/1933/schrodinger-bio.html and http://www.zbp.univie.ac.at/schrodinger/euebersicht.htm

  158. E. Schrödinger, Quantisierung als Eigenwertproblem (in German). Ann. Phys. 79(6), 489–527 (1926). https://doi.org/10.1002/andp.19263840602; see also Collected Papers on Wave Mechanics, Blackie & Son Ltd, London and Glascow, 1928, pp. 13–40, for English translation of Schrödinger’s original paper

  159. V.M. Shabaev, Recurrence formulas and some exact relations for radial integrals with Dirac and Schrödinger wave functions (in Russian). Vestnik Leningradskogo Universiteta Fizika Khimiya 4(1), 15–19 (1984)

    Google Scholar 

  160. V.M. Shabaev, Generalizations of the virial relations for the Dirac equation in a central field and their applications to the Coulomb field. J. Phys. B Atom. Mol. Opt. Phys. 24(21), 4479–4488 (1991). https://doi.org/10.1088/0953-4075/24/21/004

    Article  MathSciNet  Google Scholar 

  161. V.M. Shabaev, Hyperfine structure of hydrogen-like ions. J. Phys. B Atom. Mol. Opt. Phys. 27(24), 5825–5832 (1994). https://doi.org/10.1088/0953-4075/27/24/006

    Article  Google Scholar 

  162. V.M. Shabaev, Relativistic recoil corrections to the atomic energy levels, in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, ed. by S.G. Karshenboim, F. Bassani, F.S. Pavone, M. Inguscio, T.W. Hänsch. Lecture Notes in Physics, vol. 570 (Springer, Berlin, 2001), pp. 714–726. https://doi.org/10.1007/3-540-45395-4_51

  163. V. Shabaev, Two-time Green’s function method in quantum electrodynamics of high-Z few-electron atoms. Phys. Rep. 356(3), 119–228 (2002). https://doi.org/10.1016/S0370-1573(01)00024-2

    Article  MATH  Google Scholar 

  164. V.M. Shabaev, Virial relations for the Dirac equation and their applications to calculations of hydrogen-like atoms, in Precision Physics of Simple Atomic Systems, ed. by S.G. Karshenboim, V.B. Smirnov. Lecture Notes in Physics, vol. 627 (Springer, Berlin, 2003), pp. 97–113. https://doi.org/10.1007/978-3-540-45059-7_6

  165. V.M. Shabaev, Quantum electrodynamics of heavy ions and atoms: current status and prospects. Phys. Usp. 51(11), 1175–1180 (2008). https://doi.org/10.1070/PU2008v051n11ABEH006801

    Article  Google Scholar 

  166. V.M. Shabaev, A.N. Artemyev, T. Beier, G. Plunien, V.A. Yerokhin, G. Soff, Recoil correction to the ground-state energy of hydrogenlike atoms. Phys. Rev. A 57, 4235–4239 (1998). https://doi.org/10.1103/PhysRevA.57.4235

    Article  Google Scholar 

  167. V.M. Shabaev, D.A. Glazov, N.S. Oreshkina, A.V. Volotka, G. Plunien, H.J. Kluge, W. Quint, g-factor of heavy ions: a new access to the fine structure constant. Phys. Rev. Lett. 96, 253002 (2006). https://doi.org/10.1103/PhysRevLett.96.253002

  168. A. Sommerfeld, Zur Quantentheorie der Spektrallinien I–II. Ann. Phys. 51(17), 1–94; 18, 125–167 (1916). https://doi.org/10.1002/andp.19163561702

  169. E. Suazo, S.K. Suslov, Soliton-like solutions for the nonlinear Schrödinger equation with variable quadratic Hamiltonians. J. Russ. Laser Res. 33(1), 63–83 (2012). https://doi.org/10.1007/s10946-012-9261-3

    Article  Google Scholar 

  170. E. Suazo, S.K. Suslov, J.M. Vega-Guzmán, The Riccati differential equation and a diffusion-type equation. New York J. Math. 17 A, 225–244 (2011)

    Google Scholar 

  171. E. Suazo, S.K. Suslov, J.M. Vega-Guzmán, The Riccati system and a diffusion-type equation. MDPI-Mathematics 2(2), 96–118 (2014). https://doi.org/10.3390/math2020096

    MATH  Google Scholar 

  172. S.K. Suslov, Matrix elements of Lorentz boosts and the orthogonality of Hahn polynomials on a contour. Sov. J. Nucl. Phys. 36(4), 621–622 (1982)

    MathSciNet  MATH  Google Scholar 

  173. S.K. Suslov, Hahn polynomials in the Coulomb problem (in Russian). Sov. J. Nucl. Phys. 40(1), 79–82 (1984).

    Google Scholar 

  174. S.K. Suslov, The theory of difference analogues of special functions of hypergeometric type. Russ. Math. Surv. 44(2), 227–278 (1989). https://doi.org/10.1070/RM1989v044n02ABEH002045

    Article  MathSciNet  MATH  Google Scholar 

  175. S.K. Suslov, An Introduction to Basic Fourier Series. Developments in Mathematics, vol. 9 (Springer, Boston, 2003). https://doi.org/10.1007/978-1-4757-3731-8

  176. S.K. Suslov, Expectation values in relativistic Coulomb problems. J. Phys. B Atom. Mol. Opt. Phys. 42(18), 185003 (2009). https://doi.org/10.1088/0953-4075/42/18/185003

  177. S.K. Suslov, Dynamical invariants for variable quadratic Hamiltonians. Phys. Scr. 81(5), 055006 (2010). https://doi.org/10.1088/0031-8949/81/05/055006

  178. S.K. Suslov, Mathematical structure of relativistic Coulomb integrals. Phys. Rev. A 81, 032110 (2010). https://doi.org/10.1103/PhysRevA.81.032110

    Article  Google Scholar 

  179. S.K. Suslov, Relativistic Kramers–Pasternack recurrence relations. J. Phys. B Atom. Mol. Opt. Phys. 43(7), 074006 (2010). https://doi.org/10.1088/0953-4075/43/7/074006

  180. S.K. Suslov, On integrability of nonautonomous nonlinear Schrödinger equations. Proc. Am. Math. Soc. 140(9), 3067–3082 (2012). https://doi.org/10.1090/S0002-9939-2011-11176-6

    Article  MATH  Google Scholar 

  181. S.K. Suslov, An analogue of the Berry phase for simple harmonic oscillators. Phys. Scr. 87(3), 038118 (2013). https://doi.org/10.1088/0031-8949/87/03/038118

  182. S.K. Suslov (2019). https://math.la.asu.edu/~suslov/curres/index.htm. See Mathematica notebooks: BerrySummary.nb, Fourier.nb and Heisenberg.nb

  183. S.K. Suslov, B. Trey, The Hahn polynomials in the nonrelativistic and relativistic Coulomb problems. J. Math. Phys. 49(1), 012104 (2008). https://doi.org/10.1063/1.2830804

  184. G. Szegő, Orthogonal Polynomials. American Mathematical Society: Colloquium Publication, vol. 23, 4th edn. (American Mathematical Society, Providence, 1975)

    Google Scholar 

  185. P.L. Tchebychef, Sur l’interpolation par la méthode des moindres carrés. Mémoires de l’Académie Impériale des sciences de St.-Pétersbourg, VIIe serie 1(15), 1–24 (1859). Also in Oeuvres I, pp. 473–498

    Google Scholar 

  186. P.L. Tchebychef, Sur l’interpolation des valeurs équidistantes, in Oeuvres, P.L. Chebyshev, A.A. Markov, N. Sonin, vol. I (Chelsea Publishing Company, Hartford, 1962), pp. 542–560. Reprint of the 1864 edition

    Google Scholar 

  187. P.L. Tchebychef, Sur l’interpolation des valeurs équidistantes, in Oeuvres, ed. by P.L. Chebyshev, A.A. Markov, N. Sonin, vol. II (Chelsea Publishing Company, New York, 1962), pp. 219–242. Reprint of the 1875 edition

    Google Scholar 

  188. J. Touchard, Nombres exponentiels et nombres de Bernoulli. Can. J. Math. 8, 305–320 (1956). https://doi.org/10.4153/cjm-1956-034-1

    Article  MathSciNet  MATH  Google Scholar 

  189. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988). https://doi.org/10.1142/0270

    Book  Google Scholar 

  190. N.J. Vilenkin, Special Functions and the Theory of Group Representations. Translations of Mathematical Monographs, vol. 22 (American Mathematical Society, Providence, 1968). Translated from the Russian by V. N. Singh

    Google Scholar 

  191. L. Vinet, A. Zhedanov, Representations of the Schrödinger group and matrix orthogonal polynomials. J. Phys. A Math. Theor. 44(35), 355201 (2011). https://doi.org/10.1088/1751-8113/44/35/355201

  192. E. Vrscay, H. Hamidian, Rayleigh-Schrödinger perturbation theory at large order for radial relativistic Hamiltonians using hypervirial Hellmann–Feynman theorems. Phys. Lett. A 130(3), 141–146 (1988). https://doi.org/10.1016/0375-9601(88)90417-3

    Article  MathSciNet  Google Scholar 

  193. G.N. Watson, A Treatise on the Theory of Bessel Functions. Cambridge Mathematical Library, vol. 2 (Cambridge University Press, Cambridge 1995)

    Google Scholar 

  194. S. Weinberg, The Quantum Theory of Fields: Volumes 1–3 (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  195. E.T. Whittaker, G.N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1950) [Reprint of the 4th (1927) edition]

    MATH  Google Scholar 

  196. E.P. Wigner, The Application of Group Theory to the Special Functions of Mathematical Physics. Lectures During the Spring Term of 1955 (Princeton University Press, Princeton, 1955)

    Google Scholar 

  197. E.P. Wigner, Group Theory: And Its Application to the Quantum Mechanics of Atomic Spectra. Pure and Applied Physics, vol. 5 (Academic, New York, 1959). https://doi.org/10.1016/B978-0-12-750550-3.50003-3. Trans. from the German

  198. J.A. Wilson, Hypergeometric series recurrence relations and some new orthogonal functions. Ph.D. thesis, The University of Wisconsin, Madison, 1978

    Google Scholar 

  199. J.A. Wilson, Orthogonal functions from Gram determinants. SIAM J. Math. Anal. 22(4), 1147–1155 (1991). https://doi.org/10.1137/0522074

    Article  MathSciNet  MATH  Google Scholar 

  200. K.B. Wolf, On time-dependent quadratic quantum Hamiltonians. SIAM J. Appl. Math. 40(3), 419–431 (2005). https://doi.org/10.1137/0140035

    Article  MathSciNet  MATH  Google Scholar 

  201. M.K.F. Wong, H.Y. Yeh, Exact solution of the Dirac-Coulomb equation and its application to bound-state problems. I external fields. Phys. Rev. A 27(5), 2300–2304 (1983). https://doi.org/10.1103/PhysRevA.27.2300

    Google Scholar 

  202. M. Wyman, L. Moser, On some polynomials of Touchard. Can. J. Math. 8, 321–322 (1956). https://doi.org/10.4153/CJM-1956-035-9

    Article  MathSciNet  MATH  Google Scholar 

  203. K.H. Yeon, K.K. Lee, C.I. Um, T.F. George, L.N. Pandey, Exact quantum theory of a time-dependent bound quadratic Hamiltonian system. Phys. Rev. A 48(4), 2716–2720 (1993). https://doi.org/10.1103/PhysRevA.48.2716

    Article  Google Scholar 

  204. V.A. Yerokhin, Z. Harman, Two-loop QED corrections with closed fermion loops for the bound-electron g factor. Phys. Rev. A 88(4), 042502 (2013). https://doi.org/10.1103/PhysRevA.88.042502

  205. J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011). https://doi.org/10.1038/nature10122

    Article  Google Scholar 

  206. H.P. Yuen, Two-photon coherent states of the radiation field. Phys. Rev. A 13(6), 2226–2243 (1976). https://doi.org/10.1103/PhysRevA.13.2226

    Article  MathSciNet  Google Scholar 

  207. A.V. Zhukov, Exact quantum theory of a time-dependent system with quadratic Hamiltonian. Phys. Lett. A 256(5), 325–328 (1999). https://doi.org/10.1016/S0375-9601(99)00247-9

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to the organizers of the AIMS-Volkswagen Stiftung Workshop on Introduction to Orthogonal Polynomials and Applications held in Douala, Cameroon, in October 2018, without their help this publication would be impossible. Sincere thanks to our co-authors Christoph Koutschan, Sergey Kryuchkov, Raquel M. López, Peter Paule and Erwin Suazo; some of our joint results were included in this chapter. We are very grateful to the referee for an outstanding job, her/his numerous comments helped us to improve the manuscript. Special thanks are directed to Jeremy Alm, Valentin Andreev, Al Boggess and Michael Laidacker for support and continuous encouragement. This work was partially supported by the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health (NIH; Grant # K12GM102778) and by the Lamar University Research Enhancement Grant (REG # 420266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei K. Suslov .

Editor information

Editors and Affiliations

Appendices

Appendix A: Evaluation of an Integral

Let us compute the following integral

$$\displaystyle \begin{aligned} J_{nms}^{\alpha \beta }=\int_{0}^{\infty }e^{-x}x^{\alpha +s}L_{n}^{\alpha }\left( x\right) L_{m}^{\beta }\left( x\right) \ dx, {} \end{aligned} $$
(A.1)

where n ≥ m and α − β = 0, ±1, ±2, … . Similar integrals were evaluated in [28, 49] and [113], see also references therein, but an important relation with the Hahn polynomials seems to be missing.

It is convenient to assume at the beginning that parameter s takes some continuous values such that α + s > −1 for convergence of the integral. Using the Rodrigues formula for the Laguerre polynomials [138, 139, 184]

$$\displaystyle \begin{aligned} L_{n}^{\alpha }\left( x\right) =\frac{1}{n!}e^{x}x^{-\alpha }\left( x^{\alpha +n}e^{-x}\right) ^{\left( n\right) }, {} \end{aligned} $$
(A.2)

see the proof in Sect. 1 of the present chapter, and integrating by parts

$$\displaystyle \begin{aligned} \begin{array}{rcl} J_{nms}^{\alpha \beta } &\displaystyle =&\displaystyle \frac{1}{n!}\int_{0}^{\infty }\left( x^{\alpha +n}e^{-x}\right) ^{\left( n\right) }\left( x^{s}L_{m}^{\beta }\left( x\right) \right) \ dx \\ &\displaystyle =&\displaystyle \frac{1}{n!}\left. \left( \left( x^{\alpha +n}e^{-x}\right) ^{\left( n-1\right) }\left( x^{s}L_{m}^{\beta }\left( x\right) \right) \right) \right\vert {}_{0}^{\infty } \\ &\displaystyle \quad &\displaystyle -\frac{1}{n!}\int_{0}^{\infty }\left( x^{\alpha +n}e^{-x}\right) ^{\left( n-1\right) }\left( x^{s}L_{m}^{\beta }\left( x\right) \right) ^{\prime }\ dx \\ &\displaystyle &\displaystyle \vdots \\ &\displaystyle =&\displaystyle \frac{\left( -1\right) ^{n}}{n!}\int_{0}^{\infty }\left( x^{\alpha +n}e^{-x}\right) \left( x^{s}L_{m}^{\beta }\left( x\right) \right) ^{\left( n\right) }\ dx. \end{array} \end{aligned} $$

However, in view of (B.1),

$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle \left( x^{s}L_{m}^{\beta }\left( x\right) \right) ^{\left( n\right) }= \frac{\Gamma \left( \beta +m+1\right) }{m!\;\Gamma \left( \beta +1\right) } \sum_{k}\frac{\left( -m\right) _{k}}{k!\left( \beta +1\right) _{k}}\left( x^{k+s}\right) ^{\left( n\right) } {} \notag\\ &\displaystyle &\displaystyle \quad =\frac{\Gamma \left( \beta +m+1\right) \Gamma \left( s+1\right) }{ m!\;\Gamma \left( \beta +1\right) \Gamma \left( s-n+1\right) }\sum_{k}\frac{ \left( -m\right) _{k}\left( s+1\right) _{k}}{k!\left( \beta +1\right) _{k}\left( s-n+1\right) _{k}}\ x^{k+s-n} \end{array} \end{aligned} $$
(A.3)

and with the help of Euler’s integral representation for the gamma function [8, 138]

$$\displaystyle \begin{aligned} \int_{0}^{\infty }x^{\alpha +k+s}e^{-x}\ dx=\Gamma \left( \alpha +k+s+1\right) =\left( \alpha +s+1\right) _{k}\Gamma \left( \alpha +s+1\right) , \end{aligned}$$

see also (B.10) below, one gets

$$\displaystyle \begin{aligned} \begin{array}{rcl} J_{nms}^{\alpha \beta } &=&\left( -1\right) ^{n}\frac{\Gamma \left( \alpha +s+1\right) \Gamma \left( \beta +m+1\right) \Gamma \left( s+1\right) }{ n!\;m!\;\Gamma \left( \beta +1\right) \Gamma \left( s-n+1\right) } \notag \\ &&\times ~_{3}F_{2}\left( \begin{array}{c} -m,\ s+1,\ \alpha +s +1 \\ \beta +1,\quad s-n+1 \end{array} \right) . {} \end{array} \end{aligned} $$
(A.4)

See [16] or Eq. (1.12) for the definition of the generalized hypergeometric series \({ }_{3}F_{2}\left ( 1\right ) .\) Thomae’s transformation (B.8), see also [16] or [79], results in [183]

$$\displaystyle \begin{aligned} J_{nms}^{\alpha \beta }& =\int_{0}^{\infty }e^{-x}x^{\alpha +s}\ L_{n}^{\alpha }\left( x\right) L_{m}^{\beta }\left( x\right) \ dx {}\notag\\ & =\left( -1\right) ^{n-m}\frac{\Gamma \left( \alpha +s+1\right) \Gamma \left( \beta +m+1\right) \Gamma \left( s+1\right) }{m!\left( n-m\right) !\;\Gamma \left( \beta +1\right) \Gamma \left( s-n+m+1\right) } \notag \\ & \quad \times \ ~_{3}F_{2}\left( \begin{array}{c} -m,\ s+1,\ \beta -\alpha -s \\ \beta +1,\quad n-m+1 \end{array} \right) ,\quad n\geq m, \end{aligned} $$
(A.5)

where parameter s may take some integer values. This establishes a connection with the Hahn polynomials given by Eq. (B.6) below; one can also rewrite this integral in terms of the dual Hahn polynomials [139].

Letting s = 0 and α = β in (A.5) results in the orthogonality relation for the Laguerre polynomials. Two special cases

$$\displaystyle \begin{aligned} I_{1}=J_{nn1}^{\alpha \alpha }=\int_{0}^{\infty }e^{-x}x^{\alpha +1}\left( L_{n}^{\alpha }\left( x\right) \right) ^{2}\ dx=\left( \alpha +2n+1\right) \frac{\Gamma \left( \alpha +n+1\right) }{n!} {} \end{aligned} $$
(A.6)

and

$$\displaystyle \begin{aligned} I_{2}=J_{n,\ n-1,\ 2}^{\alpha -2,\ \alpha }=\int_{0}^{\infty }e^{-x}x^{\alpha }L_{n-1}^{\alpha }\left( x\right) L_{n}^{\alpha -2}\left( x\right) \ dx=-2\frac{\Gamma \left( \alpha +n\right) }{\left( n-1\right) !} {} \end{aligned} $$
(A.7)

are convenient for normalization of the wave functions of the discrete spectra in the nonrelativistic and relativistic Coulomb problems [28, 138].

Two other special cases of a particular interest in this chapter are

$$\displaystyle \begin{aligned} \begin{array}{rcl} &&J_{k}=J_{nnk}^{\alpha \alpha }=\int_{0}^{\infty }e^{-x}x^{\alpha +k}\ \left( L_{n}^{\alpha }\left( x\right) \right) ^{2}\ dx {} \notag\\ &&\quad =\frac{\Gamma \left( \alpha +k+1\right) \Gamma \left( \alpha +n+1\right) }{n!\;\Gamma \left( \alpha +1\right) }\ ~_{3}F_{2}\left( \begin{array}{c} -k,\ k+1,\ -n \\ 1,\quad \alpha +1 \end{array} \right) \end{array} \end{aligned} $$
(A.8)

and

$$\displaystyle \begin{aligned} \begin{array}{rcl} &&J_{-k-1}=J_{nn,\ -k-1}^{\alpha \alpha }=\int_{0}^{\infty }e^{-x}x^{\alpha -k-1}\ \left( L_{n}^{\alpha }\left( x\right) \right) ^{2}\ dx {} \notag\\ &&\quad \quad \ \ =\frac{\Gamma \left( \alpha -k\right) \Gamma \left( \alpha +n+1\right) }{n!\;\Gamma \left( \alpha +1\right) }\ ~_{3}F_{2}\left( \begin{array}{c} -k,\ k+1,\ -n \\ 1,\quad \alpha +1 \end{array} \right) . \end{array} \end{aligned} $$
(A.9)

The Chebyshev polynomials of a discrete variable \(t_{k}\left ( x\right ) \) are special case of the Hahn polynomials \(t_{k}\left ( x,N\right ) =h_{k}^{\left ( 0,\ 0\right ) }\left ( x,N\right ) \) [185, 186] and [187]. Thus from (A.8)–(A.9) and (B.6) one finally gets

$$\displaystyle \begin{aligned} \begin{array}{rcl} J_{k} &\displaystyle =&\displaystyle J_{nnk}^{\alpha \alpha }=\int_{0}^{\infty }e^{-x}x^{\alpha +k}\ \left( L_{n}^{\alpha }\left( x\right) \right) ^{2}\ dx {} \notag\\ &\displaystyle =&\displaystyle \frac{\Gamma \left( \alpha +n+1\right) }{n!}\ t_{k}\left( n,-\alpha \right) \end{array} \end{aligned} $$
(A.10)

and

$$\displaystyle \begin{aligned} \begin{array}{rcl} J_{-k-1} &\displaystyle =&\displaystyle J_{nn,\ -k-1}^{\alpha \alpha }=\int_{0}^{\infty }e^{-x}x^{\alpha -k-1}\ \left( L_{n}^{\alpha }\left( x\right) \right) ^{2}\ dx {} \notag\\ &\displaystyle =&\displaystyle \frac{\Gamma \left( \alpha -k\right) \Gamma \left( \alpha +n+1\right) }{n!\;\Gamma \left( \alpha +k+1\right) }\ t_{k}\left( n,-\alpha \right) \end{array} \end{aligned} $$
(A.11)

for 0 ≤ k < α. One can see that the positivity of these integrals is related to a nonstandard orthogonality relation for the corresponding Chebyshev polynomials of a discrete variable \(t_{k}\left ( x,N\right ) \) when the parameter takes negative integer values N = −α. Indeed, according to the method of [139] and [138], these polynomials are orthogonal with the discrete uniform distribution on the interval \(\left [ -\alpha ,-1\right ] \) which contains all their zeros and, therefore, they are positive for all nonnegative values of their argument. The explicit representation (B.6) gives also a positive sum for all positive x and negative N.

Appendix B: Hypergeometric Series, Discrete Orthogonal Polynomials, and Useful Relations

This section contains some relations involving the generalized hypergeometric series, the Laguerre and Hahn polynomials, the spherical harmonics and Clebsch–Gordan coefficients, which are used throughout the paper.

The Laguerre polynomials are defined as [8, 138, 139, 184]

$$\displaystyle \begin{aligned} L_{n}^{\alpha }\left( x\right) =\frac{\Gamma \left( \alpha +n+1\right) }{ n!\;\Gamma \left( \alpha +1\right) }\ _{1}F_{1}\left( \begin{array}{c} -n \\ \alpha +1 \end{array} ;\ x\right) . {} \end{aligned} $$
(B.1)

(It is a consequence of Theorem 1.1.) The differentiation formulas [138, 139]

$$\displaystyle \begin{aligned} \frac{d}{dx}L_{n}^{\alpha }\left( x\right) =-L_{n-1}^{\alpha +1}\left( x\right) , {} \end{aligned} $$
(B.2)
$$\displaystyle \begin{aligned} x\frac{d}{dx}L_{n}^{\alpha }\left( x\right) =nL_{n}^{\alpha }\left( x\right) -\left( \alpha +n\right) L_{n-1}^{\alpha }\left( x\right) {} \end{aligned} $$
(B.3)

imply a recurrence relation

$$\displaystyle \begin{aligned} xL_{n-1}^{\alpha +1}\left( x\right) =\left( \alpha +n\right) L_{n-1}^{\alpha }\left( x\right) -nL_{n}^{\alpha }\left( x\right) . {} \end{aligned} $$
(B.4)

The simplest case of the connecting relation (c.f. [8] and [9]) is

$$\displaystyle \begin{aligned} L_{n}^{\alpha }\left( x\right) =L_{n}^{\alpha +1}\left( x\right) -L_{n-1}^{\alpha +1}\left( x\right) . {} \end{aligned} $$
(B.5)

The Hahn polynomials are [138, 139]

$$\displaystyle \begin{aligned} \begin{array}{rcl} h_{n}^{\left( \alpha ,\ \beta \right) }\left( x,N\right) =\left( -1\right) ^{n}\frac{\Gamma \left( N\right) \left( \beta +1\right) _{n}}{n!\;\Gamma \left( N-n\right) }\ _{3}F_{2}\left( \begin{array}{c} -n ,\ \alpha +\beta +n+1,\ -x \\ \beta +1 ,\quad 1-N \end{array} ;\ 1\right). \quad {} \end{array} \end{aligned} $$
(B.6)

(We usually omit the argument of the hypergeometric series 3F 2 if it is equal to one.) An asymptotic relation with the Jacobi polynomials is

$$\displaystyle \begin{aligned} \frac{1}{\left. \widetilde{N}\right. ^{n}}\;h_{n}^{\left( \alpha ,\ \beta \right) }\left( \frac{\widetilde{N}}{2}\left( 1+s\right) -\frac{\beta +1}{2} ,\;N\right) =P_{n}^{\left( \alpha ,\ \beta \right) }\left( s\right) +\text{O} \left( \frac{1}{\left. \widetilde{N}\right. ^{2}}\right) , {} \end{aligned} $$
(B.7)

where \(\widetilde {N}=N+\left ( \alpha +\beta \right ) /2\) and N →; see [139] for more details.

Thomae’s transformation [16, 79] is

$$\displaystyle \begin{aligned} _{3}F_{2}\left( \begin{array}{c} -n ,\ a,\ b \\ c ,~d \end{array} ;\ 1\right) =\frac{\left( d-b\right) _{n}}{\left( d\right) _{n}}\ _{3}F_{2}\left( \begin{array}{c} -n ,\ c-a,\ b \\ c ,~b-d-n+1 \end{array} ;\ 1\right) {} \end{aligned} $$
(B.8)

with n = 0, 1, 2, … .

The summation formula of Gauss [8, 16, 79]

$$\displaystyle \begin{aligned} _{2}F_{1}\left( \begin{array}{c} a ,\ b \\ c \end{array} ;\ 1\right) =\frac{\Gamma \left( c\right) \Gamma \left( c-a-b\right) }{ \Gamma \left( c-a\right) \Gamma \left( c-b\right) },\qquad \text{Re}\left( c-a-b\right) >0. {} \end{aligned} $$
(B.9)

The gamma function is defined as [8, 66, 138]

$$\displaystyle \begin{aligned} \Gamma \left( z\right) =\int_{0}^{\infty }e^{-t}t^{z-1}\;dt,\qquad \text{Re}\ z>0. {} \end{aligned} $$
(B.10)

It can be continued analytically over the whole complex plane except the points z = 0, −1, −2, … at which it has simple poles. Functional equations are

$$\displaystyle \begin{aligned} \Gamma \left( z+1\right) =z\Gamma \left( z\right) , {} \end{aligned} $$
(B.11)
$$\displaystyle \begin{aligned} \Gamma \left( z\right) \Gamma \left( 1-z\right) =\frac{\pi }{\sin \pi z}, {} \end{aligned} $$
(B.12)
$$\displaystyle \begin{aligned} 2^{2z-1}\Gamma \left( z\right) \Gamma \left( z+1/2\right) =\sqrt{\pi }\Gamma \left( 2z\right) . {} \end{aligned} $$
(B.13)

The generating function for the Legendre polynomials and the addition theorem for spherical harmonics give rise to the following expansion formula [138, 189]

$$\displaystyle \begin{aligned} \frac{1}{\left| \boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right| }=\sum_{l=0}^{\infty }\sum_{m=-l}^{l}\frac{4\pi }{2l+1}\frac{r_{<}^{l}}{r_{>}^{l+1}}\ Y_{lm}\left( \theta _{1},\varphi _{1}\right) Y_{lm}^{\ast }\left( \theta _{2},\varphi _{2}\right) , {} \end{aligned} $$
(B.14)

where \(r_{<}=\min \left ( r_{1},r_{2}\right ) \) and \(r_{>}=\max \left ( r_{1},r_{2}\right ) .\)

The Clebsch–Gordan series for the spherical harmonics is [139, 148, 189]

$$\displaystyle \begin{aligned} \begin{array}{rcl} Y_{l_{1}m_{1}}\left( \theta ,\varphi \right) \ Y_{l_{2}m_{2}}\left( \theta ,\varphi \right) &\displaystyle =&\displaystyle \sum_{l=\left| l_{1}-l_{2}\right| }^{l_{1}+l_{2}}\sqrt{ \frac{\left( 2l_{1}+1\right) \left( 2l_{2}+1\right) }{4\pi \left( 2l+1\right) }} {} \notag\\ &\displaystyle &\displaystyle \times C_{l_{1}m_{1}l_{2}m_{2}}^{l,\ m_{1}+m_{2}}\ C_{l_{1}0l_{2}0}^{l,\ 0}\ Y_{l,m_{1}+m_{2}}\left( \theta ,\varphi \right) , \end{array} \end{aligned} $$
(B.15)

where \(C_{l_{1}m_{1}l_{2}m_{2}}^{lm}\) are the Clebsch–Gordan coefficients. The special case l 2 = 1 reads [71],

$$\displaystyle \begin{aligned} \begin{array}{rcl} -\sin \theta e^{i\varphi }\ Y_{l,\ m-1}&\displaystyle =\sqrt{\frac{\left( l+m\right) \left( l+m+1\right) }{\left( 2l+1\right) \left( 2l+3\right) }}\ Y_{l+1,\ m}-\sqrt{\frac{\left( l-m\right) \left( l-m-1\right) }{\left( 2l+1\right) \left( 2l-1\right) }}\ Y_{l-1,\ m}, {} \end{array} \end{aligned} $$
(B.16)
$$\displaystyle \begin{aligned} \begin{array}{rcl} \sin \theta e^{-i\varphi }\ Y_{l,\ m+1}&\displaystyle =\sqrt{\frac{\left( l-m\right) \left( l-m+1\right) }{\left( 2l+1\right) \left( 2l+3\right) }}\ Y_{l+1,\ m}-\sqrt{\frac{\left( l+m\right) \left( l+m+1\right) }{\left( 2l+1\right) \left( 2l-1\right) }}\ Y_{l-1,\ m}, {} \end{array} \end{aligned} $$
(B.17)
$$\displaystyle \begin{aligned} \begin{array}{rcl} \cos \theta \ Y_{lm}&\displaystyle =\sqrt{\frac{\left( l+1\right) ^{2}-m^{2}}{\left( 2l+1\right) \left( 2l+3\right) }}\ Y_{l+1,\ m}+\sqrt{\frac{l^{2}-m^{2}}{\left( 2l-1\right) \left( 2l+1\right) }}\ Y_{l-1,\ m}, {} \end{array} \end{aligned} $$
(B.18)

where

$$\displaystyle \begin{aligned} \sqrt{\frac{8\pi }{3}}\ Y_{1,\ \pm 1}=\mp \sin \theta e^{\pm i\varphi },\qquad \sqrt{\frac{4\pi }{3}}\ Y_{10}=\cos \theta . {} \end{aligned} $$
(B.19)

These relations allow to prove (3.34) by a direct calculation.

The required identity (5.12) can be derived from the theory of classical polynomials in the following fashion. Let us start from the difference equation for the Hahn polynomials \(y_{m}=h_{m}^{\left ( \alpha ,\ \beta \right ) }\left ( x,N\right ) \) [139]:

$$\displaystyle \begin{aligned} \left( \sigma \left( x\right) \nabla +\tau \left( x\right) \right) \Delta y_{m}+\lambda _{m}y_{m}=0, {} \end{aligned} $$
(B.20)

where \(\Delta f\left ( x\right ) =\nabla f\left ( x+1\right ) =f\left ( x+1\right ) -f\left ( x\right ) \) and

$$\displaystyle \begin{aligned} \begin{array}{rcl} \sigma \left( x\right) &\displaystyle =&\displaystyle x\left( \alpha +N-x\right) , {} \notag\\ \tau \left( x\right) &\displaystyle =&\displaystyle \left( \beta +1\right) \left( N-1\right) -\left( \alpha +\beta +2\right) x, \notag \\ \lambda _{m} &\displaystyle =&\displaystyle m\left( \alpha +\beta +m+1\right) , \end{array} \end{aligned} $$
(B.21)

and use the familiar difference-differentiation formula:

$$\displaystyle \begin{aligned} \Delta h_{m}^{\left( \alpha ,\;\beta \right) }\left( x,N\right) =\left( \alpha +\beta +m+1\right) h_{m-1}^{\left( \alpha +1,\;\beta +1\right) }\left( x,N-1\right) . {} \end{aligned} $$
(B.22)

As a result,

$$\displaystyle \begin{aligned} \left( \sigma \left( x\right) \nabla +\tau \left( x\right) \right) h_{m-1}^{\left( \alpha +1,\;\beta +1\right) }\left( x,N-1\right) +mh_{m}^{\left( \alpha ,\;\beta \right) }\left( x,N\right) =0. {} \end{aligned} $$
(B.23)

Letting α = β and β →−1, one gets

$$\displaystyle \begin{aligned} \begin{array}{rcl} &&x\left( N-x-1\right) \nabla h_{m-1}^{\left( 0,\;0\right) }\left( x,N-1\right) =-m\lim_{\beta \rightarrow -1}h_{m}^{\left( \beta ,\;\beta \right) }\left( x,N\right) {} \notag\\ &&\qquad =\left( -1\right)^{m}m\left( m-1\right) \frac{\Gamma \left( N-1\right) }{\Gamma \left( N-m\right) }x\ _{3}F_{2}\left( \begin{array}{c} 1-m ,\ m,\ 1-x \\ 2 ,\quad 2-N \end{array} \right) \end{array} \end{aligned} $$
(B.24)

by (5.11). The last identity takes the form (5.12), if the Chebyshev polynomials of a discrete variable \(h_{m-1}^{\left ( 0,\;0\right ) }\left ( x,N-1\right ) \) are replaced by the corresponding generalized hypergeometric functions. (Use of (B.22) in (B.24) gives the special 3F 2 transformation.)

Appendix C: Dirac Matrices and Inner Product

We use the standard representations of the Dirac and Pauli matrices (3.3) and (3.4). The inner product of two Dirac (bispinor) wave functions

$$\displaystyle \begin{aligned} \psi =\left( \begin{array}{c} \boldsymbol{u}_{1} \\ \boldsymbol{v}_{1} \end{array} \right) =\left( \begin{array}{c} \psi _{1} \\ \psi _{2} \\ \psi _{3} \\ \psi _{4} \end{array} \right) ,\qquad \phi =\left( \begin{array}{c} \boldsymbol{u}_{2} \\ \boldsymbol{v}_{2} \end{array} \right) =\left( \begin{array}{c} \phi _{1} \\ \phi _{2} \\ \phi _{3} \\ \phi _{4} \end{array} \right) {} \end{aligned} $$
(C.1)

is defined as a scalar quantity

$$\displaystyle \begin{aligned} \begin{array}{rcl} \left\langle \psi ,\ \phi \right\rangle &\displaystyle =&\displaystyle \int_{{\mathbb{R}}^{3}}\psi ^{\dagger }\phi \ dv=\int_{{\mathbb{R}}^{3}}\left( \boldsymbol{u}_{1}^{\dagger }{} \boldsymbol{u}_{2}+\boldsymbol{v}_{1}^{\dagger }{}\boldsymbol{v}_{2}\right) \ dv {} \notag\\ &\displaystyle =&\displaystyle \int_{{\mathbb{R}}^{3}}\left( \psi _{1}^{\ast }\phi _{1}+\psi _{2}^{\ast }\phi _{2}+\psi _{3}^{\ast }\phi _{3}+\psi _{4}^{\ast }\phi _{4}\right) \ dv \end{array} \end{aligned} $$
(C.2)

and the raised asterisk is used to denote the complex conjugate. The corresponding expectation values of a matrix operator A are given by

$$\displaystyle \begin{aligned} \langle A\rangle =\left\langle \psi ,\ A\psi \right\rangle . {} \end{aligned} $$
(C.3)

From this definition one gets

$$\displaystyle \begin{aligned} \langle r^{p}\rangle =A_{p},\qquad \langle \beta r^{p}\rangle =B_{p},\qquad \langle i\boldsymbol{\alpha }\mathbf{n}\beta r^{p}\rangle =-2C_{p}, {} \end{aligned} $$
(C.4)

where the integrals A p, B p, and C p are given by (5.1)–(5.3), respectively.

Indeed, the first relation is derived, for example, in [183] and the second one can be obtained by integrating the identity

$$\displaystyle \begin{aligned} \begin{array}{rcl} r^{p}\psi ^{\dagger }\beta \psi &=&r^{p}\left( \boldsymbol{\varphi }^{\dagger },\ \boldsymbol{\chi }^{\dagger }\right) \left( \begin{array}{cc} \boldsymbol{1} & \boldsymbol{0} \\ \boldsymbol{0} & -\boldsymbol{1} \end{array} \right) \ \left( \begin{array}{c} \boldsymbol{\varphi} \\ \boldsymbol{\chi } \end{array} \right) =r^{p}\left( \boldsymbol{\varphi }^{\dagger },\ \boldsymbol{\chi }^{\dagger }\right) \ \left( \begin{array}{c} \boldsymbol{\varphi } \\ -\boldsymbol{\chi } \end{array} \right) {} \notag\\ &=&r^{p}\left( \boldsymbol{\varphi }^{\dagger }\boldsymbol{\varphi -\chi }^{\dagger } \boldsymbol{\chi }\right) =r^{p}\left( \mathcal{Y}^{\dagger }\mathcal{Y}\right) \left( F^{2}-G^{2}\right) \end{array} \end{aligned} $$
(C.5)

(we leave details to the reader) in a similar fashion.

In the last case, we start from the matrix identity

$$\displaystyle \begin{aligned} \left( \boldsymbol{\alpha} \mathbf{n}\right) \beta \psi =\left( \begin{array}{cc} \boldsymbol{0} & \boldsymbol{\sigma} \mathbf{n} \\ \boldsymbol{\sigma} \mathbf{n} & \boldsymbol{0} \end{array} \right) \left( \begin{array}{c} \boldsymbol{\varphi } \\ -\boldsymbol{\chi } \end{array} \right) =\left( \begin{array}{c} -\left( \boldsymbol{\sigma} \mathbf{n}\right) \boldsymbol{\ \chi} \\ \left( \boldsymbol{\sigma} \mathbf{n}\right) \boldsymbol{\ \varphi } \end{array} \right) {} \end{aligned} $$
(C.6)

and use the Ansatz [183]

$$\displaystyle \begin{aligned} \boldsymbol{\varphi }=\boldsymbol{\varphi }\left( \mathbf{r}\right) =\mathcal{Y} \left( \mathbf{n}\right) \ F\left( r\right) ,\qquad \boldsymbol{\chi }=\boldsymbol{ \chi }\left( \mathbf{r}\right) =-i\left( \left( \boldsymbol{\sigma} \mathbf{n}\right) \mathcal{Y}\left( \mathbf{n}\right) \right) \ G\left( r\right) , {} \end{aligned} $$
(C.7)

where n = rr and \(\mathcal {Y}=\mathcal {Y}_{jm}^{\pm }\left ( \mathbf {n}\right ) \) are the spinor spherical harmonics given by (3.12). As a result,

$$\displaystyle \begin{aligned} \begin{array}{rcl} {} ir^{p}\psi {{}^{\dagger }}\left( \left( \boldsymbol{\alpha} \mathbf{n}\right) \beta \psi \right) &=& ir^{p}\left( \boldsymbol{\varphi }^{\dagger },\ \boldsymbol{\chi } ^{\dagger }\right) \left( \begin{array}{c} -\left( \boldsymbol{\sigma} \mathbf{n}\right) \ \boldsymbol{\chi } \\ \left( \boldsymbol{\sigma} \mathbf{n}\right) \ \boldsymbol{\varphi } \end{array} \right) \notag \\ &=&ir^{p}\left( F\mathcal{Y}^{\dagger },\ iG\mathcal{Y}^{\dagger } \left( \boldsymbol{\sigma} \mathbf{n}\right) \right) \left( \begin{array}{c} i\mathcal{Y}G \\ \left( \boldsymbol{\sigma} \mathbf{n}\right) \mathcal{Y}F \end{array} \right) \notag \\ & =&-r^{p}\left( \mathcal{Y}^{\dagger }\mathcal{Y}\right) FG-r^{p}\left( \mathcal{Y}^{\dagger }\left( \boldsymbol{\sigma} \mathbf{n}\right) ^{2}\mathcal{Y}\right) FG \notag \\ &=&-2r^{p}\left( \mathcal{Y}^{\dagger }\mathcal{Y}\right) FG \end{array} \end{aligned} $$
(C.8)

with the help of the familiar identity \(\left ( \boldsymbol {\sigma } \mathbf {n}\right ) ^{2}= {\mathbf {n}}^{2}=\boldsymbol {1}.\) Integration over \({\mathbb {R}}^{3}\) in the spherical coordinates completes the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suslov, S.K., Vega-Guzmán, J.M., Barley, K. (2020). An Introduction to Special Functions with Some Applications to Quantum Mechanics. In: Foupouagnigni, M., Koepf, W. (eds) Orthogonal Polynomials. AIMSVSW 2018. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-36744-2_21

Download citation

Publish with us

Policies and ethics