Skip to main content

\(( \mathcal {R}, p,q)\)-Rogers–Szegö and Hermite Polynomials, and Induced Deformed Quantum Algebras

  • Conference paper
  • First Online:
Orthogonal Polynomials (AIMSVSW 2018)

Included in the following conference series:

  • 940 Accesses

Abstract

Deformed quantum algebras, namely the q-deformed algebras and their extensions to (p, q)-deformed algebras, continue to attract much attention. One of the main reasons is that these topics represent a meeting point of nowadays fast developing areas in mathematics and physics like the theory of quantum orthogonal polynomials and special functions, quantum groups, integrable systems, quantum and conformal field theories and statistics.

This contribution paper aims at characterizing the \(({\mathcal R},p,q)\)-Rogers–Szegö polynomials, and the \(({\mathcal R},p,q)\)-deformed difference equation giving rise to raising and lowering operators. These polynomials induce some realizations of generalized deformed quantum algebras, (called \(({\mathcal R},p,q)\)-deformed quantum algebras), which are here explicitly constructed. The study of continuous \(({\mathcal R},p,q)\)-Hermite polynomials is also performed. Known particular cases are recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.A. Al-Salam, L. Carlitz, A q-analog of a formula of Toscano. Boll. Unione Matem. Ital. 12, 414–417 (1957)

    MathSciNet  MATH  Google Scholar 

  2. M. Arik, D. Coon, Hilbert spaces of analytic functions and generated coherent states. J. Math. Phys. 17, 424–427 (1976)

    Article  Google Scholar 

  3. N.M. Atakishiyev, S.K. Suslov, Difference analogs of the harmonic oscillator. Theor. Math. Phys. 85, 1055–1062 (1990)

    Article  Google Scholar 

  4. J.D. Bukweli Kyemba, M.N. Hounkonnou, Characterization of \(({\mathcal {R}},p,q)\)-deformed Rogers-Szegö polynomials: associated quantum algebras, deformed Hermite polynomials and relevant properties. J. Phys. A Math. Theor. 45, 225204 (2012)

    Google Scholar 

  5. I.M. Burban, A.U. Klimyk, P, Q-differentiation, P, Q-integration, and P, Q-hypergeometric functions related to quantum groups. Integr. Transform. Spec. Funct. 2, 15 (1994)

    Article  MathSciNet  Google Scholar 

  6. R. Chakrabarti, R. Jagannathan, A (p, q)-oscillator realization of two-parameter quantum algebras. J. Phys. A Math. Gen. 24, L711 (1991)

    Article  MathSciNet  Google Scholar 

  7. V. Chari, A. Pressley, A Guide to Quantum Groups (Cambridge University Press, Cambridge, 1994)

    MATH  Google Scholar 

  8. P. Feinsilver, Lie algebras and recursion relations III: q-analogs and quantized algebras. Acta Appl. Math. 19, 207–251 (1990)

    Article  MathSciNet  Google Scholar 

  9. R. Floreanini, L. Lapointe, L. Vinet, A note on (p, q)-oscillators and bibasic hypergeometric functions. J. Phys. A Math. Gen. 26, L611–L614 (1993)

    Article  MathSciNet  Google Scholar 

  10. D. Galetti, A realization of the q-deformed harmonic oscillator: Rogers–Szegö and Stieltjes–Wigert polynomials. Braz. J. Phys. 33(1), 148–157 (2003)

    Article  Google Scholar 

  11. G. Gasper, M. Rahman, Basic Hypergeometric Series (Cambridge University Press, Cambridge, 1990)

    MATH  Google Scholar 

  12. I.M. Gelfand, M.I. Graev, L. Vinet, (r, s)-hypergeometric functions of one variable. Russ. Acad. Sci. Dokl. Math. 48, 591 (1994)

    Google Scholar 

  13. M.N. Hounkonnou, E.B. Ngompe Nkouankam, On (p, q, μ, ν, ϕ 1, ϕ 2) generalized oscillator algebra and related bibasic hypergeometric functions. J. Phys. A Math. Theor. 40, 883543 (2007)

    MathSciNet  Google Scholar 

  14. M.N. Hounkonnou, J.D. Bukweli Kyemba, Generalized \(( {\mathcal {R}},p,q)\)-deformed Heisenberg algebras: coherent states and special functions. J. Math. Phys. 51, 063518 (2010)

    Google Scholar 

  15. M.N. Hounkonnou, E.B. Ngompe Nkouankam, New (p, q, μ, ν, f)-deformed states. J. Phys. A Math. Theor. 40, 12113 (2007)

    Article  MathSciNet  Google Scholar 

  16. E.H. Ismail Mourad, Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, vol. 98 (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  17. R. Jagannathan, R. Sridhar, (p, q)-Rogers–Szegö polynomials and the (p, q)-oscillator, in The Legacy of Alladi Ramakrishnan in the Mathematical Sciences (Springer, New York, 2010), pp. 491–501

    MATH  Google Scholar 

  18. R. Jagannathan, K. Srinivasa Rao, Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series (2006). arXiv:math/0602613

    Google Scholar 

  19. F.H. Jackson, On q-functions and a certain difference operator. Trans. R. Soc. Edin. 46, 253–281 (1908)

    Article  Google Scholar 

  20. F.H. Jackson, On q-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)

    MATH  Google Scholar 

  21. M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation. Lett. Math. Phys. 10, 63–69 (1985)

    Article  MathSciNet  Google Scholar 

  22. A. Klimyk, K. Schmudgen, Quantum Groups and their Representation (Springer, Berlin, 1997)

    Book  Google Scholar 

  23. R. Koekoek, R.F. Swarttouw, The Askey-scheme of orthogonal polynomials and its q-analogue. TUDelft Report No. 98-17, 1998

    Google Scholar 

  24. A. Odzijewicz, Quantum algebras and q-special functions related to coherent states maps of the disc. Commun. Math. Phys. 192, 183–215 (1998 )

    Article  MathSciNet  Google Scholar 

  25. C. Quesne, K.A. Penson, V.M. Tkachuk, Maths-type q-deformed coherent states for q > 1. Phys. Lett. A 313, 29–36 (2003)

    Article  MathSciNet  Google Scholar 

  26. M.P. Schützenberger, Une interpretation de certaines solutions de l’equation fonctionnelle: F(x + y)F(x) + F(y). C. R. Acad. Sci. Paris 236, 352–353 (1953)

    MathSciNet  MATH  Google Scholar 

  27. G. Szegö, Collected Papers, in ed. by R. Askey, vol. 1 (Birkäuser, Basel, 1982), pp. 793–805

    Google Scholar 

  28. G. Szegö, in Orthogonal Polynomials. Colloquium Publications, vol. 23 (American Mathematical Society, Providence, 1991)

    Google Scholar 

Download references

Acknowledgements

This work is supported by TWAS Research Grant RGA No. 17-542 RG/MATHS/AF/AC_G-FR3240300147. The ICMPA-UNESCO Chair is in partnership with Daniel Iagolnitzer Foundation (DIF), France, and the Association pour la Promotion Scientifique de l’Afrique (APSA), supporting the development of mathematical physics in Africa. I am grateful to my students, Fridolin Melong and Cyrille Essossolim Haliya, who devoted their Christmas day to carefully read this manuscript and check the details.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahouton Norbert Hounkonnou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hounkonnou, M.N. (2020). \(( \mathcal {R}, p,q)\)-Rogers–Szegö and Hermite Polynomials, and Induced Deformed Quantum Algebras. In: Foupouagnigni, M., Koepf, W. (eds) Orthogonal Polynomials. AIMSVSW 2018. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-36744-2_16

Download citation

Publish with us

Policies and ethics