Skip to main content

CCL7 Signaling in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1231))

Abstract

The tumor microenvironment is the primary location in which tumor cells and the host immune system interact. There are many physiological, biochemical, cellular mechanisms in the neighbor of tumor which is composed of various cell types. Interactions of chemokines and chemokine receptors can recruit immune cell subsets into the tumor microenvironment. These interactions can modulate tumor progression and metastasis. In this chapter, we will focus on chemokine (C-C motif) ligand 7 (CCL7) that is highly expressed in the tumor microenvironment of various cancers, including colorectal cancer, breast cancer, oral cancer, renal cancer, and gastric cancer. We reviewed how CCL7 can affect cancer immunity and tumorigenesis by describing its regulation and roles in immune cell recruitment and stromal cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thelen M (2001) Dancing to the tune of chemokines. Nat Immunol 2(2):129–134. https://doi.org/10.1038/84224

    Article  CAS  PubMed  Google Scholar 

  2. Fulton AM (2009) The chemokine receptors CXCR4 and CXCR3 in cancer. Curr Oncol Rep 11(2):125–131

    Article  CAS  Google Scholar 

  3. Baggiolini M, Dewald B, Moser B (1997) Human chemokines: an update. Annu Rev Immunol 15:675–705. https://doi.org/10.1146/annurev.immunol.15.1.675

    Article  CAS  PubMed  Google Scholar 

  4. Pease JE, Horuk R (2009) Chemokine receptor antagonists: part 1. Expert Opin Ther Pat 19(1):39–58. https://doi.org/10.1517/13543770802641346

    Article  CAS  PubMed  Google Scholar 

  5. Pease JE, Horuk R (2009) Chemokine receptor antagonists: part 2. Expert Opin Ther Pat 19(2):199–221. https://doi.org/10.1517/13543770802641353

    Article  CAS  PubMed  Google Scholar 

  6. Mantovani A (1999) The chemokine system: redundancy for robust outputs. Immunol Today 20(6):254–257

    Article  CAS  Google Scholar 

  7. Baggiolini M (1998) Chemokines and leukocyte traffic. Nature 392(6676):565–568. https://doi.org/10.1038/33340

    Article  CAS  PubMed  Google Scholar 

  8. Campbell JJ, Hedrick J, Zlotnik A, Siani MA, Thompson DA, Butcher EC (1998) Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 279(5349):381–384. https://doi.org/10.1126/science.279.5349.381

    Article  CAS  PubMed  Google Scholar 

  9. Van Damme J, Proost P, Lenaerts JP, Opdenakker G (1992) Structural and functional identification of two human, tumor-derived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family. J Exp Med 176(1):59–65. https://doi.org/10.1084/jem.176.1.59

    Article  PubMed  Google Scholar 

  10. Xu LL, McVicar DW, Ben-Baruch A, Kuhns DB, Johnston J, Oppenheim JJ, Wang JM (1995) Monocyte chemotactic protein-3 (MCP3) interacts with multiple leukocyte receptors: binding and signaling of MCP3 through shared as well as unique receptors on monocytes and neutrophils. Eur J Immunol 25(9):2612–2617. https://doi.org/10.1002/eji.1830250931

    Article  CAS  PubMed  Google Scholar 

  11. Allavena P, Bianchi G, Zhou D, van Damme J, Jilek P, Sozzani S, Mantovani A (1994) Induction of natural killer cell migration by monocyte chemotactic protein-1, -2 and -3. Eur J Immunol 24(12):3233–3236. https://doi.org/10.1002/eji.1830241249

    Article  CAS  PubMed  Google Scholar 

  12. Jung DW, Che ZM, Kim J, Kim K, Kim KY, Williams D, Kim J (2010) Tumor-stromal crosstalk in invasion of oral squamous cell carcinoma: a pivotal role of CCL7. Int J Cancer 127(2):332–344. https://doi.org/10.1002/ijc.25060

    Article  CAS  PubMed  Google Scholar 

  13. Wyler L, Napoli CU, Ingold B, Sulser T, Heikenwalder M, Schraml P, Moch H (2014) Brain metastasis in renal cancer patients: metastatic pattern, tumour-associated macrophages and chemokine/chemoreceptor expression. Br J Cancer 110(3):686–694. https://doi.org/10.1038/bjc.2013.755

    Article  CAS  PubMed  Google Scholar 

  14. Cho YB, Lee WY, Choi SJ, Kim J, Hong HK, Kim SH, Choi YL, Kim HC, Yun SH, Chun HK, Lee KU (2012) CC chemokine ligand 7 expression in liver metastasis of colorectal cancer. Oncol Rep 28(2):689–694. https://doi.org/10.3892/or.2012.1815

    Article  CAS  PubMed  Google Scholar 

  15. Hwang TL, Lee LY, Wang CC, Liang Y, Huang SF, Wu CM (2012) CCL7 and CCL21 overexpression in gastric cancer is associated with lymph node metastasis and poor prognosis. World J Gastroenterol 18(11):1249–1256. https://doi.org/10.3748/wjg.v18.i11.1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Menten P, Wuyts A, Van Damme J (2002) Macrophage inflammatory protein-1. Cytokine Growth Factor Rev 13(6):455–481

    Article  CAS  Google Scholar 

  17. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, Gimotty PA, Gilks CB, Lal P, Zhang L, Coukos G (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475(7355):226–230. https://doi.org/10.1038/nature10169

    Article  CAS  PubMed  Google Scholar 

  18. Zou L, Barnett B, Safah H, Larussa VF, Evdemon-Hogan M, Mottram P, Wei S, David O, Curiel TJ, Zou W (2004) Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res 64(22):8451–8455. https://doi.org/10.1158/0008-5472.CAN-04-1987

    Article  CAS  PubMed  Google Scholar 

  19. Li CX, Ling CC, Shao Y, Xu A, Li XC, Ng KT, Liu XB, Ma YY, Qi X, Liu H, Liu J, Yeung OW, Yang XX, Liu QS, Lam YF, Zhai Y, Lo CM, Man K (2016) CXCL10/CXCR3 signaling mobilized-regulatory T cells promote liver tumor recurrence after transplantation. J Hepatol 65(5):944–952. https://doi.org/10.1016/j.jhep.2016.05.032

    Article  CAS  PubMed  Google Scholar 

  20. Durr C, Pfeifer D, Claus R, Schmitt-Graeff A, Gerlach UV, Graeser R, Kruger S, Gerbitz A, Negrin RS, Finke J, Zeiser R (2010) CXCL12 mediates immunosuppression in the lymphoma microenvironment after allogeneic transplantation of hematopoietic cells. Cancer Res 70(24):10170–10181. https://doi.org/10.1158/0008-5472.CAN-10-1943

    Article  CAS  PubMed  Google Scholar 

  21. Righi E, Kashiwagi S, Yuan J, Santosuosso M, Leblanc P, Ingraham R, Forbes B, Edelblute B, Collette B, Xing D, Kowalski M, Mingari MC, Vianello F, Birrer M, Orsulic S, Dranoff G, Poznansky MC (2011) CXCL12/CXCR4 blockade induces multimodal antitumor effects that prolong survival in an immunocompetent mouse model of ovarian cancer. Cancer Res 71(16):5522–5534. https://doi.org/10.1158/0008-5472.CAN-10-3143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Erhardt A, Wegscheid C, Claass B, Carambia A, Herkel J, Mittrucker HW, Panzer U, Tiegs G (2011) CXCR3 deficiency exacerbates liver disease and abrogates tolerance in a mouse model of immune-mediated hepatitis. J Immunol 186(9):5284–5293. https://doi.org/10.4049/jimmunol.1003750

    Article  CAS  PubMed  Google Scholar 

  23. Paust HJ, Riedel JH, Krebs CF, Turner JE, Brix SR, Krohn S, Velden J, Wiech T, Kaffke A, Peters A, Bennstein SB, Kapffer S, Meyer-Schwesinger C, Wegscheid C, Tiegs G, Thaiss F, Mittrucker HW, Steinmetz OM, Stahl RA, Panzer U (2016) CXCR3+ regulatory T cells control TH1 responses in crescentic GN. J Am Soc Nephrol 27(7):1933–1942. https://doi.org/10.1681/ASN.2015020203

    Article  CAS  PubMed  Google Scholar 

  24. Lunardi S, Jamieson NB, Lim SY, Griffiths KL, Carvalho-Gaspar M, Al-Assar O, Yameen S, Carter RC, McKay CJ, Spoletini G, D’Ugo S, Silva MA, Sansom OJ, Janssen KP, Muschel RJ, Brunner TB (2014) IP-10/CXCL10 induction in human pancreatic cancer stroma influences lymphocytes recruitment and correlates with poor survival. Oncotarget 5(22):11064–11080. https://doi.org/10.18632/oncotarget.2519

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhao E, Wang L, Dai J, Kryczek I, Wei S, Vatan L, Altuwaijri S, Sparwasser T, Wang G, Keller ET, Zou W (2012) Regulatory T cells in the bone marrow microenvironment in patients with prostate cancer. Oncoimmunology 1(2):152–161. https://doi.org/10.4161/onci.1.2.18480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Palomino DC, Marti LC (2015) Chemokines and immunity. Einstein (Sao Paulo) 13(3):469–473. https://doi.org/10.1590/S1679-45082015RB3438

    Article  Google Scholar 

  27. Mollica Poeta V, Massara M, Capucetti A, Bonecchi R (2019) Chemokines and chemokine receptors: new targets for cancer immunotherapy. Front Immunol 10:379. https://doi.org/10.3389/fimmu.2019.00379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blanpain C, Migeotte I, Lee B, Vakili J, Doranz BJ, Govaerts C, Vassart G, Doms RW, Parmentier M (1999) CCR5 binds multiple CC-chemokines: MCP-3 acts as a natural antagonist. Blood 94(6):1899–1905

    Article  CAS  Google Scholar 

  29. da Silva JL, Dos Santos ALS, Nunes NCC, de Moraes Lino da Silva F, Ferreira CGM, de Melo AC (2019) Cancer immunotherapy: the art of targeting the tumor immune microenvironment. Cancer Chemother Pharmacol 84(2):227–240. https://doi.org/10.1007/s00280-019-03894-3

    Article  PubMed  Google Scholar 

  30. Belli C, Trapani D, Viale G, D’Amico P, Duso BA, Della Vigna P, Orsi F, Curigliano G (2018) Targeting the microenvironment in solid tumors. Cancer Treat Rev 65:22–32. https://doi.org/10.1016/j.ctrv.2018.02.004

    Article  CAS  PubMed  Google Scholar 

  31. Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, Onder TT, Wang ZC, Richardson AL, Weinberg RA, Orimo A (2010) Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci U S A 107(46):20009–20014. https://doi.org/10.1073/pnas.1013805107

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sugihara H, Ishimoto T, Yasuda T, Izumi D, Eto K, Sawayama H, Miyake K, Kurashige J, Imamura Y, Hiyoshi Y, Iwatsuki M, Iwagami S, Baba Y, Sakamoto Y, Miyamoto Y, Yoshida N, Watanabe M, Takamori H, Baba H (2015) Cancer-associated fibroblast-derived CXCL12 causes tumor progression in adenocarcinoma of the esophagogastric junction. Med Oncol 32(6):618. https://doi.org/10.1007/s12032-015-0618-7

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Cai Y, Liu L, Wu Y, Xiong X (2018) Crucial biological functions of CCL7 in cancer. PeerJ 6:e4928. https://doi.org/10.7717/peerj.4928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Su B, Zhao W, Shi B, Zhang Z, Yu X, Xie F, Guo Z, Zhang X, Liu J, Shen Q, Wang J, Li X, Zhang Z, Zhou L (2014) Let-7d suppresses growth, metastasis, and tumor macrophage infiltration in renal cell carcinoma by targeting COL3A1 and CCL7. Mol Cancer 13:206. https://doi.org/10.1186/1476-4598-13-206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee YS, Kim SY, Song SJ, Hong HK, Lee Y, Oh BY, Lee WY, Cho YB (2016) Crosstalk between CCL7 and CCR3 promotes metastasis of colon cancer cells via ERK-JNK signaling pathways. Oncotarget 7(24):36842–36853. https://doi.org/10.18632/oncotarget.9209

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gonzalez A, Garcia de Durango C, Alonso V, Bravo B, Rodriguez de Gortazar A, Wells A, Forteza J, Vidal-Vanaclocha F (2017) Distinct osteomimetic response of androgen-dependent and independent human prostate cancer cells to mechanical action of fluid flow: prometastatic implications. Prostate 77(3):321–333. https://doi.org/10.1002/pros.23270

    Article  CAS  PubMed  Google Scholar 

  37. Menten P, Proost P, Struyf S, Van Coillie E, Put W, Lenaerts JP, Conings R, Jaspar JM, De Groote D, Billiau A, Opdenakker G, Van Damme J (1999) Differential induction of monocyte chemotactic protein-3 in mononuclear leukocytes and fibroblasts by interferon-alpha/beta and interferon-gamma reveals MCP-3 heterogeneity. Eur J Immunol 29(2):678–685. https://doi.org/10.1002/(SICI)1521-4141(199902)29:02<678::AID-IMMU678>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  38. Menten P, Wuyts A, Van Damme J (2001) Monocyte chemotactic protein-3. Eur Cytokine Netw 12(4):554–560

    CAS  PubMed  Google Scholar 

  39. Ali S, Robertson H, Wain JH, Isaacs JD, Malik G, Kirby JA (2005) A non-glycosaminoglycan-binding variant of CC chemokine ligand 7 (monocyte chemoattractant protein-3) antagonizes chemokine-mediated inflammation. J Immunol 175(2):1257–1266. https://doi.org/10.4049/jimmunol.175.2.1257

    Article  CAS  PubMed  Google Scholar 

  40. Chai CY, Chen WT, Hung WC, Kang WY, Huang YC, Su YC, Yang CH (2008) Hypoxia-inducible factor-1alpha expression correlates with focal macrophage infiltration, angiogenesis and unfavourable prognosis in urothelial carcinoma. J Clin Pathol 61(5):658–664. https://doi.org/10.1136/jcp.2007.050666

    Article  PubMed  Google Scholar 

  41. Stossi F, Madak-Erdogan Z, Katzenellenbogen BS (2012) Macrophage-elicited loss of estrogen receptor-alpha in breast cancer cells via involvement of MAPK and c-Jun at the ESR1 genomic locus. Oncogene 31(14):1825–1834. https://doi.org/10.1038/onc.2011.370

    Article  CAS  PubMed  Google Scholar 

  42. Yuan A, Hsiao YJ, Chen HY, Chen HW, Ho CC, Chen YY, Liu YC, Hong TH, Yu SL, Chen JJ, Yang PC (2015) Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression. Sci Rep 5:14273. https://doi.org/10.1038/srep14273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang M, He Y, Sun X, Li Q, Wang W, Zhao A, Di W (2014) A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J Ovarian Res 7:19. https://doi.org/10.1186/1757-2215-7-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cassetta L, Pollard JW (2018) Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov 17(12):887–904. https://doi.org/10.1038/nrd.2018.169

    Article  CAS  PubMed  Google Scholar 

  45. Andersen MH (2019) The targeting of tumor-associated macrophages by vaccination. Cell Stress 3(5):139–140. https://doi.org/10.15698/cst2019.05.185

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mohr AM, Gould JJ, Kubik JL, Talmon GA, Casey CA, Thomas P, Tuma DJ, McVicker BL (2017) Enhanced colorectal cancer metastases in the alcohol-injured liver. Clin Exp Metastasis 34(2):171–184. https://doi.org/10.1007/s10585-017-9838-x

    Article  CAS  PubMed  Google Scholar 

  47. De Monte L, Wormann S, Brunetto E, Heltai S, Magliacane G, Reni M, Paganoni AM, Recalde H, Mondino A, Falconi M, Aleotti F, Balzano G, Algul H, Doglioni C, Protti MP (2016) Basophil recruitment into tumor-draining lymph nodes correlates with Th2 inflammation and reduced survival in pancreatic cancer patients. Cancer Res 76(7):1792–1803. https://doi.org/10.1158/0008-5472.CAN-15-1801-T

    Article  CAS  PubMed  Google Scholar 

  48. Durrans A, Gao D, Gupta R, Fischer KR, Choi H, El Rayes T, Ryu S, Nasar A, Spinelli CF, Andrews W, Elemento O, Nolan D, Stiles B, Rafii S, Narula N, Davuluri R, Altorki NK, Mittal V (2015) Identification of reprogrammed myeloid cell transcriptomes in NSCLC. PLoS One 10(6):e0129123. https://doi.org/10.1371/journal.pone.0129123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Han S, Wang T, Chen Y, Han Z, Guo L, Wu Z, Yan W, Wei H, Liu T, Zhao J, Zhou W, Yang X, Xiao J (2019) High CCL7 expression is associated with migration, invasion and bone metastasis of non-small cell lung cancer cells. Am J Transl Res 11(1):442–452

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW, Banerjee D (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68(11):4331–4339. https://doi.org/10.1158/0008-5472.CAN-08-0943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ostman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth--bystanders turning into key players. Curr Opin Genet Dev 19(1):67–73. https://doi.org/10.1016/j.gde.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  52. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348. https://doi.org/10.1016/j.cell.2005.02.034

    Article  CAS  PubMed  Google Scholar 

  53. Erdogan B, Webb DJ (2017) Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans 45(1):229–236. https://doi.org/10.1042/BST20160387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu JS, Sheng SR, Liang XH, Tang YL (2017) The role of tumor microenvironment in collective tumor cell invasion. Future Oncol 13(11):991–1002. https://doi.org/10.2217/fon-2016-0501

    Article  CAS  PubMed  Google Scholar 

  55. Fransvea E, Angelotti U, Antonaci S, Giannelli G (2008) Blocking transforming growth factor-beta up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology 47(5):1557–1566. https://doi.org/10.1002/hep.22201

    Article  CAS  PubMed  Google Scholar 

  56. Liu J, Chen S, Wang W, Ning BF, Chen F, Shen W, Ding J, Chen W, Xie WF, Zhang X (2016) Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-beta pathways. Cancer Lett 379(1):49–59. https://doi.org/10.1016/j.canlet.2016.05.022

    Article  CAS  PubMed  Google Scholar 

  57. Wang M, Wu C, Guo Y, Cao X, Zheng W, Fan GK (2017) The primary growth of laryngeal squamous cell carcinoma cells in vitro is effectively supported by paired cancer-associated fibroblasts alone. Tumour Biol 39(5):1010428317705512. https://doi.org/10.1177/1010428317705512

    Article  CAS  PubMed  Google Scholar 

  58. Rajaram M, Li J, Egeblad M, Powers RS (2013) System-wide analysis reveals a complex network of tumor-fibroblast interactions involved in tumorigenicity. PLoS Genet 9(9):e1003789. https://doi.org/10.1371/journal.pgen.1003789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bae JY, Kim EK, Yang DH, Zhang X, Park YJ, Lee DY, Che CM, Kim J (2014) Reciprocal interaction between carcinoma-associated fibroblasts and squamous carcinoma cells through interleukin-1alpha induces cancer progression. Neoplasia 16(11):928–938. https://doi.org/10.1016/j.neo.2014.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Roberts DL, Dive C, Renehan AG (2010) Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med 61:301–316. https://doi.org/10.1146/annurev.med.080708.082713

    Article  CAS  PubMed  Google Scholar 

  61. Gilbert CA, Slingerland JM (2013) Cytokines, obesity, and cancer: new insights on mechanisms linking obesity to cancer risk and progression. Annu Rev Med 64:45–57. https://doi.org/10.1146/annurev-med-121211-091527

    Article  CAS  PubMed  Google Scholar 

  62. Vona-Davis L, Rose DP (2009) Angiogenesis, adipokines and breast cancer. Cytokine Growth Factor Rev 20(3):193–201. https://doi.org/10.1016/j.cytogfr.2009.05.007

    Article  CAS  PubMed  Google Scholar 

  63. Bochet L, Lehuede C, Dauvillier S, Wang YY, Dirat B, Laurent V, Dray C, Guiet R, Maridonneau-Parini I, Le Gonidec S, Couderc B, Escourrou G, Valet P, Muller C (2013) Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res 73(18):5657–5668. https://doi.org/10.1158/0008-5472.CAN-13-0530

    Article  CAS  PubMed  Google Scholar 

  64. Allott EH, Masko EM, Freedland SJ (2013) Obesity and prostate cancer: weighing the evidence. Eur Urol 63(5):800–809. https://doi.org/10.1016/j.eururo.2012.11.013

    Article  CAS  PubMed  Google Scholar 

  65. Parker AS, Thiel DD, Bergstralh E, Carlson RE, Rangel LJ, Joseph RW, Diehl N, Karnes RJ (2013) Obese men have more advanced and more aggressive prostate cancer at time of surgery than non-obese men after adjusting for screening PSA level and age: results from two independent nested case-control studies. Prostate Cancer Prostatic Dis 16(4):352–356. https://doi.org/10.1038/pcan.2013.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Laurent V, Guerard A, Mazerolles C, Le Gonidec S, Toulet A, Nieto L, Zaidi F, Majed B, Garandeau D, Socrier Y, Golzio M, Cadoudal T, Chaoui K, Dray C, Monsarrat B, Schiltz O, Wang YY, Couderc B, Valet P, Malavaud B, Muller C (2016) Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nat Commun 7:10230. https://doi.org/10.1038/ncomms10230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ericksen RE, Rose S, Westphalen CB, Shibata W, Muthupalani S, Tailor Y, Friedman RA, Han W, Fox JG, Ferrante AW Jr, Wang TC (2014) Obesity accelerates Helicobacter felis-induced gastric carcinogenesis by enhancing immature myeloid cell trafficking and TH17 response. Gut 63(3):385–394. https://doi.org/10.1136/gutjnl-2013-305092

    Article  CAS  PubMed  Google Scholar 

  68. Wu K, Fukuda K, Xing F, Zhang Y, Sharma S, Liu Y, Chan MD, Zhou X, Qasem SA, Pochampally R, Mo YY, Watabe K (2015) Roles of the cyclooxygenase 2 matrix metalloproteinase 1 pathway in brain metastasis of breast cancer. J Biol Chem 290(15):9842–9854. https://doi.org/10.1074/jbc.M114.602185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Morrison C, Mancini S, Cipollone J, Kappelhoff R, Roskelley C, Overall C (2011) Microarray and proteomic analysis of breast cancer cell and osteoblast co-cultures: role of osteoblast matrix metalloproteinase (MMP)-13 in bone metastasis. J Biol Chem 286(39):34271–34285. https://doi.org/10.1074/jbc.M111.222513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vande Broek I, Asosingh K, Vanderkerken K, Straetmans N, Van Camp B, Van Riet I (2003) Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, -2 and -3. Br J Cancer 88(6):855–862. https://doi.org/10.1038/sj.bjc.6600833

    Article  CAS  PubMed  Google Scholar 

  71. Lin LY, Du LM, Cao K, Huang Y, Yu PF, Zhang LY, Li FY, Wang Y, Shi YF (2016) Tumour cell-derived exosomes endow mesenchymal stromal cells with tumour-promotion capabilities. Oncogene 35(46):6038–6042. https://doi.org/10.1038/onc.2016.131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ren G, Zhao X, Wang Y, Zhang X, Chen X, Xu C, Yuan ZR, Roberts AI, Zhang L, Zheng B, Wen T, Han Y, Rabson AB, Tischfield JA, Shao C, Shi Y (2012) CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFalpha. Cell Stem Cell 11(6):812–824. https://doi.org/10.1016/j.stem.2012.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wetzel K, Menten P, Opdenakker G, Van Damme J, Grone HJ, Giese N, Vecchi A, Sozzani S, Cornelis JJ, Rommelaere J, Dinsart C (2001) Transduction of human MCP-3 by a parvoviral vector induces leukocyte infiltration and reduces growth of human cervical carcinoma cell xenografts. J Gene Med 3(4):326–337. https://doi.org/10.1002/jgm.191

    Article  CAS  PubMed  Google Scholar 

  74. Fioretti F, Fradelizi D, Stoppacciaro A, Ramponi S, Ruco L, Minty A, Sozzani S, Garlanda C, Vecchi A, Mantovani A (1998) Reduced tumorigenicity and augmented leukocyte infiltration after monocyte chemotactic protein-3 (MCP-3) gene transfer: perivascular accumulation of dendritic cells in peritumoral tissue and neutrophil recruitment within the tumor. J Immunol 161(1):342–346

    CAS  PubMed  Google Scholar 

  75. Wetzel K, Struyf S, Van Damme J, Kayser T, Vecchi A, Sozzani S, Rommelaere J, Cornelis JJ, Dinsart C (2007) MCP-3 (CCL7) delivered by parvovirus MVMp reduces tumorigenicity of mouse melanoma cells through activation of T lymphocytes and NK cells. Int J Cancer 120(6):1364–1371. https://doi.org/10.1002/ijc.22421

    Article  CAS  PubMed  Google Scholar 

  76. Dempe S, Lavie M, Struyf S, Bhat R, Verbeke H, Paschek S, Berghmans N, Geibig R, Rommelaere J, Van Damme J, Dinsart C (2012) Antitumoral activity of parvovirus-mediated IL-2 and MCP-3/CCL7 delivery into human pancreatic cancer: implication of leucocyte recruitment. Cancer Immunol Immunother 61(11):2113–2123. https://doi.org/10.1007/s00262-012-1279-4

    Article  CAS  PubMed  Google Scholar 

  77. Hu JY, Li GC, Wang WM, Zhu JG, Li YF, Zhou GH, Sun QB (2002) Transfection of colorectal cancer cells with chemokine MCP-3 (monocyte chemotactic protein-3) gene retards tumor growth and inhibits tumor metastasis. World J Gastroenterol 8(6):1067–1072. https://doi.org/10.3748/wjg.v8.i6.1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, Mack M, Charo IF (2007) Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 117(4):902–909. https://doi.org/10.1172/JCI29919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK, Prior JL, Piwnica-Worms D, Bridger G, Ley TJ, DiPersio JF (2009) Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 113(24):6206–6214. https://doi.org/10.1182/blood-2008-06-162123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Winsett FT, Lewis DJ, Duvic M (2017) Mogamulizumab for the treatment of relapsed or refractory adult T-cell leukemia-lymphoma. Expert Rev Hematol 10(9):757–760. https://doi.org/10.1080/17474086.2017.1361819

    Article  CAS  PubMed  Google Scholar 

  81. Mogamulizumab tops standard of care for CTCL (2018) Cancer Discov 8(2):OF1. https://doi.org/10.1158/2159-8290.CD-NB2018-001

  82. Kitamura T, Fujishita T, Loetscher P, Revesz L, Hashida H, Kizaka-Kondoh S, Aoki M, Taketo MM (2010) Inactivation of chemokine (C-C motif) receptor 1 (CCR1) suppresses colon cancer liver metastasis by blocking accumulation of immature myeloid cells in a mouse model. Proc Natl Acad Sci U S A 107(29):13063–13068. https://doi.org/10.1073/pnas.1002372107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gonzalez-Martin A, Mira E, Manes S (2012) CCR5 in cancer immunotherapy: more than an “attractive” receptor for T cells. Oncoimmunology 1(1):106–108. https://doi.org/10.4161/onci.1.1.17995

    Article  PubMed  PubMed Central  Google Scholar 

  84. Halama N, Zoernig I, Berthel A, Kahlert C, Klupp F, Suarez-Carmona M, Suetterlin T, Brand K, Krauss J, Lasitschka F, Lerchl T, Luckner-Minden C, Ulrich A, Koch M, Weitz J, Schneider M, Buechler MW, Zitvogel L, Herrmann T, Benner A, Kunz C, Luecke S, Springfeld C, Grabe N, Falk CS, Jaeger D (2016) Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients. Cancer Cell 29(4):587–601. https://doi.org/10.1016/j.ccell.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  85. Nywening TM, Wang-Gillam A, Sanford DE, Belt BA, Panni RZ, Cusworth BM, Toriola AT, Nieman RK, Worley LA, Yano M, Fowler KJ, Lockhart AC, Suresh R, Tan BR, Lim KH, Fields RC, Strasberg SM, Hawkins WG, DeNardo DG, Goedegebuure SP, Linehan DC (2016) Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol 17(5):651–662. https://doi.org/10.1016/S1470-2045(16)00078-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li X, Yao W, Yuan Y, Chen P, Li B, Li J, Chu R, Song H, Xie D, Jiang X, Wang H (2017) Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut 66(1):157–167. https://doi.org/10.1136/gutjnl-2015-310514

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Beom Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, Y.S., Cho, Y.B. (2020). CCL7 Signaling in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1231. Springer, Cham. https://doi.org/10.1007/978-3-030-36667-4_4

Download citation

Publish with us

Policies and ethics