Skip to main content

Exploiting Pattern Set Dissimilarity for Detecting Changes in Communication Networks

  • Chapter
  • First Online:
  • 445 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 880))

Abstract

Communication networks are inherently dynamic and the changes are often due to unpredicted causes, for instance, failures of the devices or bulks of user requests. To guarantee the continuation of the services, the providers should keep the typical activities of control and management of the network aligned with respect to these changes. They should handle both the evolution of the network and complexity of the infrastructure, while, actually, most of the existing technologies do not adopt update mechanisms or deal with the problem only for specific categories of networks. We propose a data mining approach to analyze evolving communication data while accounting for the whole network and its parts (devices and connections). The approach is able to detect changes that denote substantial and statistically evident variations in the communication modalities. Changes correspond to variations appearing in the frequent sub-networks discovered from evolving communication data: variations in the frequent sub-networks denote changes occurring in the raw data. We perform experimental evaluation on both real and synthetic networks and provide quantitative and qualitative results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://bitbucket.org/netminerteam/datasets.

References

  1. Bell, S., McDiarmid, A., Irvine, J.: Nodobo: Mobile phone as a software sensor for social network research. In: Proceedings of the 73rd IEEE Vehicular Technology Conference, VTC Spring 2011, 15–18 May 2011, Budapest, Hungary, pp. 1–5. IEEE (2011)

    Google Scholar 

  2. Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., Pedreschi, D.: Evolving networks: Eras and turning points. Intell. Data Anal. 17(1), 27–48 (2013)

    Article  Google Scholar 

  3. Brauckhoff, D., Dimitropoulos, X.A., Wagner, A., Salamatian, K.: Anomaly extraction in backbone networks using association rules. IEEE/ACM Trans. Netw. 20(6), 1788–1799 (2012)

    Article  Google Scholar 

  4. Ceci, M., Loglisci, C., Macchia, L.: Ranking sentences for keyphrase extraction: a relational data mining approach. Procedia Comput. Sci. 38, 52–59 (2014). https://doi.org/10.1016/j.procs.2014.10.011

    Article  Google Scholar 

  5. Chakrabarti, D., Faloutsos, C.: Graph Mining: Laws, Tools, and Case Studies. Synthesis Lectures on Data Mining and Knowledge Discovery. Morgan & Claypool Publishers, San Rafael (2012)

    Google Scholar 

  6. Cheng, H., Tan, P., Potter, C., Klooster, S.A.: A robust graph-based algorithm for detection and characterization of anomalies in noisy multivariate time series. In: ICDM Workshops, pp. 349–358. IEEE Computer Society (2008)

    Google Scholar 

  7. Gama, J., Gaber, M.M.: Learning from Data Streams: Processing Techniques in Sensor Networks. Springer, Berlin (2007)

    Book  Google Scholar 

  8. He, W., Hu, G., Zhou, Y.: Large-scale IP network behavior anomaly detection and identification using substructure-based approach and multivariate time series mining. Telecommun. Syst. 50(1), 1–13 (2012)

    Article  Google Scholar 

  9. Kim, T., Cho, S.: Web traffic anomaly detection using C-LSTM neural networks. Expert Syst. Appl. 106, 66–76 (2018)

    Article  Google Scholar 

  10. Koh, Y.S.: CD-TDS: change detection in transactional data streams for frequent pattern mining. In: 2016 International Joint Conference on Neural Networks, IJCNN 2016, Vancouver, BC, Canada, July 24–29, 2016, pp. 1554–1561 (2016)

    Google Scholar 

  11. Loglisci, C., Ceci, M., Impedovo, A., Malerba, D.: Mining microscopic and macroscopic changes in network data streams. Knowl.-Based Syst. 161, 294–312 (2018)

    Article  Google Scholar 

  12. Loglisci, C., Ceci, M., Malerba, D.: Discovering evolution chains in dynamic networks. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) First International Workshop, NFMCP 2012, ECML/PKDD 2012, UK, 2012, Revised Selected Papers, Lecture Notes in Computer Science, vol. 7765, pp. 185–199. Springer (2012). https://doi.org/10.1007/978-3-642-37382-4_13

    Chapter  Google Scholar 

  13. Loglisci, C., Malerba, D.: Leveraging temporal autocorrelation of historical data for improving accuracy in network regression. Stat. Anal. Data Min. 10(1), 40–53 (2017)

    Article  MathSciNet  Google Scholar 

  14. Nohuddin, P.N.E., Coenen, F., Christley, R., Setzkorn, C., Patel, Y., Williams, S.: Finding “interesting” trends in social networks using frequent pattern mining and self organizing maps. Knowl.-Based Syst. 29, 104–113 (2012)

    Article  Google Scholar 

  15. Ranshous, S., Shen, S., Koutra, D., Harenberg, S., Faloutsos, C., Samatova, N.F.: Anomaly detection in dynamic networks: a survey. Wiley Interdiscip. Rev. Comput. Stat. 7(3), 223–247 (2015)

    Article  MathSciNet  Google Scholar 

  16. Sanctis, M.D., Bisio, I., Araniti, G.: Data mining algorithms for communication networks control: concepts, survey and guidelines. IEEE Netw. 30(1), 24–29 (2016)

    Article  Google Scholar 

  17. Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Boston (2005)

    Google Scholar 

  18. Tran, D., Gaber, M.M., Sattler, K.: Change detection in streaming data in the era of big data: models and issues. SIGKDD Explor. 16(1), 30–38 (2014)

    Article  Google Scholar 

  19. Wang, H., Tang, M., Park, Y., Priebe, C.E.: Locality statistics for anomaly detection in time series of graphs. IEEE Trans. Signal Process. 62(3), 703–717 (2014)

    Article  MathSciNet  Google Scholar 

  20. Wang, Y., Chakrabarti, A., Sivakoff, D., Parthasarathy, S.: Fast change point detection on dynamic social networks. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19–25, 2017, pp. 2992–2998 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Impedovo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Impedovo, A., Loglisci, C., Ceci, M., Malerba, D. (2020). Exploiting Pattern Set Dissimilarity for Detecting Changes in Communication Networks. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z. (eds) Complex Pattern Mining. Studies in Computational Intelligence, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-030-36617-9_9

Download citation

Publish with us

Policies and ethics