Skip to main content

Neurocritical Care Ultrasound

  • Chapter
  • First Online:
Neurointensive Care Unit

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Ultrasound has revolutionized the practice of medicine and critical care. The use of bedside ultrasound and transcranial Doppler has multiple important applications in decision-making in neurocritical care, some of which are still being discovered. The basic principles, however, must be well-understood; in addition, sound operator training is needed. Optimal use of these modalities requires understanding dynamic changes in systemic and cerebrovascular blood flow physiology and interpreting them in the context of the patient’s clinical condition and ongoing therapies. This chapter provides a broad framework for novices and also addresses the latest research pertaining to critical care ultrasound in subarachnoid hemorrhage, traumatic brain injury, ischemic stroke, intracranial hemorrhage, brain death, and bedside procedures. Original clinical cases with illustrations and images are used to highlight key concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shampo MA, Kyle RA. Karl Theodore Dussik—Pioneer in ultrasound. Mayo Clin Proc. 1995;70(12):1136.

    Article  CAS  PubMed  Google Scholar 

  2. Ochoa-Pérez L, Cardozo-Ocampo A. Ultrasound applications in the central nervous system for neuroanaesthesia and neurocritical care. Colomb J Anesthesiol. 2015;43(4):314–20.

    Google Scholar 

  3. Robba C, Cardim D, Sekhon M, Budohoski K, Czosnyka M. Transcranial Doppler: a stethoscope for the brain-neurocritical care use. J Neurosci Res. 2018;96(4):720–30.

    Article  CAS  PubMed  Google Scholar 

  4. Aaslid R, Markwalder T-M, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57(6):769–74.

    Article  CAS  PubMed  Google Scholar 

  5. McGirt MJ, Blessing RP, Goldstein LB. Transcranial Doppler monitoring and clinical decision-making after subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2003;12(2):88–92.

    Article  PubMed  Google Scholar 

  6. Akif TM. Transcranial Doppler ultrasound in neurovascular diseases: diagnostic and therapeutic aspects. J Neurochem. 2012;123:39–51.

    Article  CAS  Google Scholar 

  7. Viski S, Olah L. Use of transcranial Doppler in intensive care unit. J Crit Care Med [Internet]. 2017 [Cited 28 Mar 2018];3(3). Available from: http://www.degruyter.com/view/j/jccm.2017.3.issue-3/jccm-2017-0021/jccm-2017-0021.xml

  8. Alexandrov AV, Sloan MA, Wong Lawrence KS, Colleen D, Razumovsky Alexander Y, Koroshetz Walter J, et al. Practice standards for transcranial Doppler ultrasound: part I—Test performance. J Neuroimaging. 2007;17(1):11–8.

    Article  PubMed  Google Scholar 

  9. Sloan MA, Alexandrov AV, Tegeler CH, Spencer MP, Caplan LR, Feldmann E, et al. Assessment: transcranial Doppler ultrasonography report of the therapeutics and technology assessment Subcommittee of the American Academy of Neurology. Neurology. 2004;62(9):1468–81.

    Article  CAS  PubMed  Google Scholar 

  10. Aaslid R, Huber P, Nornes H. Evaluation of cerebrovascular spasm with transcranial Doppler ultrasound. J Neurosurg. 1984;60(1):37–41.

    Article  CAS  PubMed  Google Scholar 

  11. Sloan MA, Zagardo MT, Wozniak MA, Macko RF, Aldrich EF, Simard JM, et al. Sensitivity and specificity of flow velocity ratios for the diagnosis of vasospasm after subarachnoid hemorrhage: preliminary report. New Trends Cereb Hemodynamics Neurosonology. 1997:221–7.

    Google Scholar 

  12. Soustiel JF, Shik V, Shreiber R, Tavor Y, Goldsher D. Basilar vasospasm diagnosis: investigation of a modified “Lindegaard Index” based on imaging studies and blood velocity measurements of the basilar artery. Stroke. 2002;33(1):72–8.

    Article  PubMed  Google Scholar 

  13. Sviri GE, Lewis DH, Correa R, Britz GW, Douville CM, Newell DW. Basilar artery vasospasm and delayed posterior circulation ischemia after aneurysmal subarachnoid hemorrhage. Stroke. 2004;35(8):1867–72.

    Article  PubMed  Google Scholar 

  14. Carrera E, Schmidt JM, Oddo M, Fernandez L, Claassen J, Seder D, et al. Transcranial Doppler for predicting delayed cerebral ischemia after subarachnoid hemorrhage. Neurosurgery. 2009;65(2):316–24.

    Article  PubMed  Google Scholar 

  15. Otite F, Mink S, Tan CO, Puri A, Zamani AA, Mehregan A, et al. Impaired cerebral autoregulation is associated with vasospasm and delayed cerebral ischemia in subarachnoid hemorrhage. Stroke. 2014;45(3):677.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Santos GA, Petersen N, Zamani AA, Du R, LaRose S, Monk A, et al. Pathophysiologic differences in cerebral autoregulation after subarachnoid hemorrhage. Neurology. 2016;86(21):1950–6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Naqvi J, Yap KH, Ahmad G, Ghosh J. Transcranial Doppler ultrasound: a review of the physical principles and major applications in critical care. Int J Vasc Med. 2013;2013:1–13.

    Article  Google Scholar 

  18. Muench E, Horn P, Bauhuf C, Roth H, Philipps M, Hermann P, et al. Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage∗. Crit Care Med. 2007;35(8):1844–51.

    Article  PubMed  Google Scholar 

  19. Moretti R, Pizzi B. Inferior vena cava distensibility as a predictor of fluid responsiveness in patients with subarachnoid hemorrhage. Neurocrit Care. 2010;13(1):3–9.

    Article  PubMed  Google Scholar 

  20. Feissel M, Michard F, Faller J-P, Teboul J-L. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30(9):1834–7.

    Article  PubMed  Google Scholar 

  21. Barbier C, Loubières Y, Schmit C, Hayon J, Ricôme J-L, Jardin F, et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30(9):1740–6.

    PubMed  Google Scholar 

  22. Jue J, Chung W, Schiller NB. Does inferior vena cava size predict right atrial pressures in patients receiving mechanical ventilation? J Am Soc Echocardiogr. 1992;5(6):613–9.

    Article  CAS  PubMed  Google Scholar 

  23. Miller A, Mandeville J. Predicting and measuring fluid responsiveness with echocardiography. Echo Res Pract. 2016;3(2):G1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mandeville JC, Colebourn CL. Can transthoracic echocardiography be used to predict fluid responsiveness in the critically ill patient? A systematic review. Crit Care Res Pract. 2012;2012:9.

    Google Scholar 

  25. Lichtenstein DA, Mezière GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure∗: the BLUE Protocol. Chest. 2008;134(1):117–25.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Williamson CA, Co I, Pandey AS, Gregory Thompson B, Rajajee V. Accuracy of daily lung ultrasound for the detection of pulmonary edema following subarachnoid hemorrhage. Neurocrit Care. 2016;24(2):189–96.

    Article  PubMed  Google Scholar 

  27. Kono T, Morita H, Kuroiwa T, Onaka H, Takatsuka H, Fujiwara A. Left ventricular wall motion abnormalities in patients with subarachnoid hemorrhage: neurogenic stunned myocardium. J Am Coll Cardiol. 1994;24(3):636–40.

    Article  CAS  PubMed  Google Scholar 

  28. Dujardin KS, McCully RB, Wijdicks EF, Tazelaar HD, Seward JB, McGregor CG, et al. Myocardial dysfunction associated with brain death: clinical, echocardiographic, and pathologic features. J Heart Lung Transplant. 2001;20(3):350–7.

    Article  CAS  PubMed  Google Scholar 

  29. Bulsara KR, McGirt MJ, Liao L, Villavicencio AT, Borel C, Alexander MJ, et al. Use of the peak troponin value to differentiate myocardial infarction from reversible neurogenic left ventricular dysfunction associated with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2003;98(3):524–8.

    Article  PubMed  Google Scholar 

  30. Vignon P, Dugard A, Abraham J, Belcour D, Gondran G, Pepino F, et al. Focused training for goal-oriented hand-held echocardiography performed by noncardiologist residents in the intensive care unit. Intensive Care Med. 2007;33(10):1795–9.

    Article  PubMed  Google Scholar 

  31. Jensen M, Sloth E, Larsen K, Schmidt M. Transthoracic echocardiography for cardiopulmonary monitoring in intensive care. Eur J Anaesthesiol. 2004;21:700–7.

    Article  CAS  PubMed  Google Scholar 

  32. Kerro A, Woods T, Chang JJ. Neurogenic stunned myocardium in subarachnoid hemorrhage. J Crit Care. 2017;38:27–34.

    Article  PubMed  Google Scholar 

  33. Cinotti R, Piriou N, Launey Y, Le Tourneau T, Lamer M, Delater A, et al. Speckle tracking analysis allows sensitive detection of stress cardiomyopathy in severe aneurysmal subarachnoid hemorrhage patients. Intensive Care Med. 2016;42(2):173–82.

    Article  PubMed  Google Scholar 

  34. Brooks FA, Ughwanogho U, Henderson GV, Black-Schaffer R, Sorond FA, Tan CO. The link between cerebrovascular hemodynamics and rehabilitation outcomes after aneurysmal subarachnoid hemorrhage. Am J Phys Med Rehabil. 2018;97(5):309–15.

    Article  Google Scholar 

  35. Robba C, Cardim D, Tajsic T, Pietersen J, Bulman M, Donnelly J, et al. Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: a prospective observational study. Schreiber M, editor. PLOS Med. 2017;14(7):e1002356.

    Google Scholar 

  36. Soldatos T, Karakitsos D, Chatzimichail K, Papathanasiou M, Gouliamos A, Karabinis A. Optic nerve sonography in the diagnostic evaluation of adult brain injury. Crit Care. 2008;12(3):R67.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tsung JW, Blaivas M, Cooper A, Levick NR. A rapid noninvasive method of detecting elevated intracranial pressure using bedside ocular ultrasound: application to 3 cases of head trauma in the pediatric emergency department. Pediatr Emerg Care. 2005;21(2):94–8.

    Article  PubMed  Google Scholar 

  38. Geeraerts T, Launey Y, Martin L, Pottecher J, Vigué B, Duranteau J, et al. Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med. 2007;33(10):1704–11.

    Article  PubMed  Google Scholar 

  39. Tayal VS, Neulander M, Norton HJ, Foster T, Saunders T, Blaivas M. Emergency department sonographic measurement of optic nerve sheath diameter to detect findings of increased intracranial pressure in adult head injury patients. Ann Emerg Med. 2007;49(4):508–14.

    Article  PubMed  Google Scholar 

  40. Czosnyka M, Richards HK, Whitehouse HE, Pickard JD. Relationship between transcranial Doppler-determined pulsatility index and cerebrovascular resistance: an experimental study. J Neurosurg. 1996;84(1):79–84.

    Article  CAS  PubMed  Google Scholar 

  41. de Riva N, Budohoski KP, Smielewski P, Kasprowicz M, Zweifel C, Steiner LA, et al. Transcranial Doppler pulsatility index: what it is and what it isn’t. Neurocrit Care. 2012;17(1):58–66.

    Article  PubMed  Google Scholar 

  42. Martin NA, Patwardhan RV, Alexander MJ, Africk CZ, Lee JH, Shalmon E, et al. Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg. 1997;87(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  43. Ziegler D, Cravens G, Poche G, Gandhi R, Tellez M. Use of transcranial Doppler in patients with severe traumatic brain injuries. J Neurotrauma. 2017;34(1):121–7.

    Article  PubMed  Google Scholar 

  44. Chan K, Dearden N, Miller J. The significance of posttraumatic increase in cerebral blood flow velocity: a transcranial Doppler ultrasound study. Neurosurgery. 1992;30(5):697–700.

    CAS  PubMed  Google Scholar 

  45. Weber M, Grolimund P, Seiler RW. Evaluation of posttraumatic cerebral blood flow velocities by transcranial Doppler ultrasonography. Neurosurgery. 1990;27(1):106–12.

    Article  CAS  PubMed  Google Scholar 

  46. Mattioli C, Beretta L, Gerevini S, Veglia F, Citerio G, Cormio M, et al. Traumatic subarachnoid hemorrhage on the computerized tomography scan obtained at admission: a multicenter assessment of the accuracy of diagnosis and the potential impact on patient outcome. J Neurosurg. 2003;98(1):37–42.

    Article  PubMed  Google Scholar 

  47. Oertel M, Boscardin WJ, Obrist WD, Glenn TC, McArthur DL, Gravori T, et al. Posttraumatic vasospasm: the epidemiology, severity, and time course of an underestimated phenomenon: a prospective study performed in 299 patients. J Neurosurg. 2005;103(5):812–24.

    Article  PubMed  Google Scholar 

  48. Armonda RA, Bell RS, Vo AH, Ling G, DeGraba TJ, Crandall B, et al. Wartime traumatic cerebral vasospasmrecent review of combat casualties. Neurosurgery. 2006;59(6):1215–25.

    Article  PubMed  Google Scholar 

  49. Ract C, Le Moigno S, Bruder N, Vigué B. Transcranial Doppler ultrasound goal-directed therapy for the early management of severe traumatic brain injury. Intensive Care Med. 2007;33(4):645–51.

    Article  PubMed  Google Scholar 

  50. Jägersberg M, Schaller C, Boström J, Schatlo B, Kotowski M, Thees C. Simultaneous bedside assessment of global cerebral blood flow and effective cerebral perfusion pressure in patients with intracranial hypertension. Neurocrit Care. 2010;12(2):225–33.

    Article  PubMed  Google Scholar 

  51. Barlinn K, Alexandrov AV. Vascular imaging in stroke: comparative analysis. Neurotherapeutics. 2011;8(3):340–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. NASCET collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med. 1991;325(7):445–53.

    Article  Google Scholar 

  53. Schievink WI. Spontaneous dissection of the carotid and vertebral arteries. N Engl J Med. 2001;344(12):898–906.

    Article  CAS  PubMed  Google Scholar 

  54. Reinhard M, Schwarzer G, Briel M, Altamura C, Palazzo P, King A, et al. Cerebrovascular reactivity predicts stroke in high-grade carotid artery disease. Neurology. 2014;83(16):1424–31.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Feldmann E, Wilterdink JL, Kosinski A, Lynn M, Chimowitz MI, Sarafin J, et al. The stroke outcomes and neuroimaging of intracranial atherosclerosis (SONIA) trial. Neurology. 2007;68(24):2099.

    Article  CAS  PubMed  Google Scholar 

  56. Alexandrov AV, Demchuk AM, Wein TH, Grotta JC. Yield of transcranial Doppler in acute cerebral ischemia. Stroke. 1999;30(8):1604.

    Article  CAS  PubMed  Google Scholar 

  57. Tsivgoulis G, Sharma VK, Hoover SL, Lao AY, Ardelt AA, Malkoff MD, et al. Applications and advantages of power motion-mode Doppler in acute posterior circulation cerebral ischemia. Stroke. 2008;39(4):1197–204.

    Article  PubMed  Google Scholar 

  58. Zhao L, Barlinn K, Sharma VK, Tsivgoulis G, Cava LF, Vasdekis SN, et al. Velocity criteria for intracranial stenosis revisited. Stroke. 2011;42(12):3429.

    Article  PubMed  Google Scholar 

  59. Spencer MP. Hemodynamics of arterial stenosis. In: Spencer MP, editor. Ultrasonic diagnosis of cerebrovascular disease: Doppler techniques and pulse echo imaging [Internet]. Dordrecht: Springer Netherlands; 1987. p. 117–46. https://doi.org/10.1007/978-94-009-4305-6_9.

    Chapter  Google Scholar 

  60. Wilterdink JL, Feldmann E, Furie KL, Bragoni M, Benavides JG. Transcranial Doppler ultrasound battery reliably identifies severe internal carotid artery stenosis. Stroke. 1997;28(1):133.

    Article  CAS  PubMed  Google Scholar 

  61. Demchuk AM, Burgin WS, Christou I, Felberg RA, Barber PA, Hill MD, et al. Thrombolysis in brain ischemia (TIBI) transcranial Doppler flow grades predict clinical severity, early recovery, and mortality in patients treated with intravenous tissue plasminogen activator. Stroke. 2001;32(1):89.

    Article  CAS  PubMed  Google Scholar 

  62. Sloan MA, Alexandrov AV, Tegeler CH. Transcranial Doppler ultrasonography in 2004: a comprehensive evidence-based update. Neurology. 2004;62(9):1468–81.

    Article  CAS  PubMed  Google Scholar 

  63. González-Alujas T, Evangelista A, Santamarina E, Rubiera M, Gómez-Bosch Z, Rodríguez-Palomares JF, et al. Diagnosis and quantification of patent foramen ovale. Which is the reference technique? Simultaneous study with transcranial Doppler, transthoracic and transesophageal echocardiography. Rev Esp Cardiol Engl Ed. 2011;64(2):133–9.

    Article  Google Scholar 

  64. Mojadidi MK, Roberts SC, Winoker JS, Romero J, Goodman-Meza D, Gevorgyan R, et al. Accuracy of transcranial Doppler for the diagnosis of intracardiac right-to-left shunt. JACC Cardiovasc Imaging. 2014;7(3):236–50.

    Article  PubMed  Google Scholar 

  65. Droste DW, Lakemeier S, Wichter T, Stypmann J, Dittrich R, Ritter M, et al. Optimizing the technique of contrast transcranial Doppler ultrasound in the detection of right-to-left shunts. Stroke. 2002;33(9):2211.

    Article  PubMed  Google Scholar 

  66. Jayasooriya G, Thapar A, Shalhoub J, Davies AH. Silent cerebral events in asymptomatic carotid stenosis. J Vasc Surg. 2011;54(1):227–36.

    Article  PubMed  Google Scholar 

  67. Gao S, Wong KS, Hansberg T, Lam WWM, Droste DW, Ringelstein EB. Microembolic signal predicts recurrent cerebral ischemic events in acute stroke patients with middle cerebral artery stenosis. Stroke. 2004;35(12):2832–6.

    Article  PubMed  Google Scholar 

  68. Sliwka U, Lingnau A, Stohlmann W-D, Schmidt P, Mull M, Diehl RR, et al. Prevalence and time course of microembolic signals in patients with acute stroke: a prospective study. Stroke. 1997;28(2):358–63.

    Article  CAS  PubMed  Google Scholar 

  69. Demir S, Ozdag MF, Kendirli MT, Togrol RE. What do anticoagulants say about microemboli? J Stroke Cerebrovasc Dis. 2015;24(11):2474–7.

    Article  PubMed  Google Scholar 

  70. Markus HS. Dual antiplatelet therapy with clopidogrel and aspirin in symptomatic carotid stenosis evaluated using Doppler embolic signal detection: the Clopidogrel and Aspirin for Reduction of Emboli in Symptomatic Carotid Stenosis (CARESS) trial. Circulation. 2005;111(17):2233–40.

    Article  CAS  PubMed  Google Scholar 

  71. Chen S-P, Fuh J-L, Chang F-C, Lirng J-F, Shia B-C, Wang S-J. Transcranial color Doppler study for reversible cerebral vasoconstriction syndromes. Ann Neurol. 2008;63(6):751–7.

    Article  PubMed  Google Scholar 

  72. Razumovsky AY, Wityk RJ, Geocadin RG, Bhardwaj A, Ulatowski JA. Cerebral vasculitis: diagnosis and follow-up with transcranial Doppler ultrasonography. J Neuroimaging. 2001;11(3):333–5.

    Article  CAS  PubMed  Google Scholar 

  73. Ritter MA, Dziewas R, Papke K, Lüdemann P. Follow-up examinations by transcranial Doppler ultrasound in primary angiitis of the central nervous system. Cerebrovasc Dis. 2002;14(2):139–42.

    Article  PubMed  Google Scholar 

  74. Paliwal PR, Teoh HL, Sharma VK. Association between reversible cerebral vasoconstriction syndrome and thrombotic thrombocytopenic purpura. J Neurol Sci. 2014;338(1):223–5.

    Article  PubMed  Google Scholar 

  75. Müller M, Merkelbach S, Hermes M, Schimrigk K. Transcranial Doppler sonography at the early stage of acute central nervous system infections in adults. Ultrasound Med Biol. 1996;22(2):173–8.

    Article  PubMed  Google Scholar 

  76. Tai M-LS, Sharma VK. Role of transcranial Doppler in the evaluation of vasculopathy in tuberculous meningitis. PLoS One. 2016;11(10):e0164266.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Platt OS. Preventing stroke in sickle cell anemia. N Engl J Med. 2005;353(26):2743–5.

    Article  CAS  PubMed  Google Scholar 

  78. Adams RJ, McKie VC, Hsu L, Files B, Vichinsky E, Pegelow C, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med. 1998;339(1):5–11.

    Article  CAS  PubMed  Google Scholar 

  79. Discontinuing prophylactic transfusions used to prevent stroke in sickle cell disease. N Engl J Med. 2005;353(26):2769–78.

    Google Scholar 

  80. Agnelli G, Verso M. Epidemiology of cerebral vein and sinus thrombosis. Front Neurol Neurosci. 2008;23:16–22.

    PubMed  Google Scholar 

  81. Valdueza JM, Schmierer K, Mehraein S, Einhaüpl KM. Assessment of normal flow velocity in basal cerebral veins: a transcranial Doppler ultrasound study. Stroke. 1996;27(7):1221–5.

    Article  CAS  PubMed  Google Scholar 

  82. Valdueza JM, Hoffmann O, Doepp F, Lehmann R, Einhäupl KM. Venous Doppler ultrasound assessment of the parasellar region. Cerebrovasc Dis. 1998;8(2):113–7.

    Article  CAS  PubMed  Google Scholar 

  83. Doepp F, Hoffmann O, Lehmann R, Valdueza JM. Doppler assessment of the inferior petrosal sinus using the suboccipital approach. Eur J Ultrasound. 1997;5(1001):23.

    Google Scholar 

  84. Valdueza JM, Hoffmann O, Weih M, Mehraein S, Einhäupl KM. Monitoring of venous hemodynamics in patients with cerebral venous thrombosis by transcranial Doppler ultrasound. Arch Neurol. 1999;56(2):229–34.

    Article  CAS  PubMed  Google Scholar 

  85. Castro P, Serrador JM, Rocha I, Sorond F, Azevedo E. Efficacy of cerebral autoregulation in early ischemic stroke predicts smaller infarcts and better outcome. Front Neurol [Internet]. 2017 [Cited 28 Mar 2018];8. Available from: http://journal.frontiersin.org/article/10.3389/fneur.2017.00113/full.

  86. Castro P, Azevedo E, Serrador J, Rocha I, Sorond F. Hemorrhagic transformation and cerebral edema in acute ischemic stroke: link to cerebral autoregulation. J Neurol Sci. 2017;372:256–61.

    Article  PubMed  Google Scholar 

  87. Carson SC, Hertzberg BS, Bowie JD, Burger PC. Value of sonography in the diagnosis of intracranial hemorrhage and periventricular leukomalacia: a postmortem study of 35 cases. Am J Neuroradiol. 1990;11(4):677–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Huisman TAGM. Intracranial hemorrhage: ultrasound, CT and MRI findings. Eur Radiol. 2005;15(3):434–40.

    Article  PubMed  Google Scholar 

  89. Ropper AH. Lateral displacement of the brain and level of consciousness in patients with an acute hemispheral mass. N Engl J Med. 1986;314(15):953–8.

    Article  CAS  PubMed  Google Scholar 

  90. Sung-Chun T, Sheng-Jean H, Jiann-Shing J, Ping-Keung Y. Third ventricle midline shift due to spontaneous supratentorial intracerebral hemorrhage evaluated by transcranial color-coded sonography. J Ultrasound Med. 2006;25(2):203–9.

    Article  Google Scholar 

  91. Stolz E, Gerriets T, Fiss I, Babacan SS, Seidel G, Kaps M. Comparison of transcranial color-coded duplex sonography and cranial CT measurements for determining third ventricle midline shift in space-occupying stroke. Am J Neuroradiol. 1999;20(8):1567–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Klingelhöfer J, Sander D. Doppler CO2 test as an indicator of cerebral vasoreactivity and prognosis in severe intracranial hemorrhages. Stroke. 1992;23(7):962–6.

    Article  PubMed  Google Scholar 

  93. Ducrocq X, Braun M, Debouverie M, Junges C, Hummer M, Vespignani H. Brain death and transcranial Doppler: experience in 130 cases of brain dead patients. J Neurol Sci. 1998;160(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  94. Azevedo E, Teixeira J, Neves JC, Vaz R. Transcranial Doppler and brain death. Transplant Proc. 2000;32(8):2579–81.

    Article  CAS  PubMed  Google Scholar 

  95. Hassler W, Steinmetz H, Gawlowski J. Transcranial Doppler ultrasonography in raised intracranial pressure and in intracranial circulatory arrest. J Neurosurg. 1988;68(5):745–51.

    CAS  PubMed  Google Scholar 

  96. Soldatos T, Karakitsos D, Wachtel M, Boletis J, Chatzimichail K, Papathanasiou M, et al. The value of transcranial Doppler sonography with a transorbital approach in the confirmation of cerebral circulatory arrest. Transplant Proc. 2010;42(5):1502–6.

    Article  CAS  PubMed  Google Scholar 

  97. Soni NJ, Franco-Sadud R, Schnobrich D, Dancel R, Tierney DM, Salame G, et al. Ultrasound guidance for lumbar puncture. Neurol Clin Pract. 2016;6(4):358–68.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Holm HH, Skjoldbye B. Interventional ultrasound. Ultrasound Med Biol. 1996;22(7):773–89.

    Article  CAS  PubMed  Google Scholar 

  99. Horowitz R, Gossett JG, Bailitz J, Wax D, Pierce MC. The FLUSH study—Flush the line and ultrasound the heart: ultrasonographic confirmation of central femoral venous line placement. Ann Emerg Med. 2014;63(6):678–83.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Clinical Case Descriptions

Clinical Case Descriptions

Clinical Case 1: A 59-year-old man presents with the worst headache of his life and is diagnosed with Hunt and Hess grade 3 and modified Fisher grade 3 SAH due to a ruptured left MCA bifurcation aneurysm. On day 8, TCD reveals elevated left MCA MFV (mean 156 cm/s) and an LR of 5.7 consistent with moderate vasospasm. Velocities continue to increase, prompting an angiogram on day 12 that reveals mild to moderate vasospasm that is treated with intra-arterial verapamil. Velocities reach a plateau and gradually decrease thereafter. See Fig. 25.1 for key features of the spectral waveform including peak systolic velocity (PSV) and end-diastolic velocity (EDV); all other indices are calculated from these velocities.

Clinical Case 2: Volume assessment using bedside ultrasound in a patient with aneurysmal SAH. (a) A highly collapsible IVC with an absolute diameter <1 cm suggested fluid responsiveness. The IVC diameter increased and collapsibility was reduced following a bolus of IV fluids (not shown). All measurements are performed just distal to the entry point of the hepatic vein into the IVC. (b) Development of multiple B-lines after further resuscitation suggested fluid overload. Fluids were stopped to prevent the development of respiratory distress.

Clinical Case 3: A 76-year-old woman presented with severe traumatic SAH after falling down a flight of stairs. A CT head revealed diffuse subarachnoid and subdural hemorrhage. She was hypotensive on presentation and required vasopressors. The initial EKG revealed ST segment elevations in septal leads and a mild troponin elevation. Bedside TTE (apical four chamber view) in systole showed apical akinesis consistent with a diagnosis of Takotsubo cardiomyopathy. No segmental wall motion abnormalities were present to suggest myocardial ischemia. Her hypotension improved with supportive care and she was weaned off vasopressors by day 3. A follow-up TTE (not shown) showed resolution of the apical akinesis.

Clinical Case 4: A 50-year-old man was found down with a Glasgow Coma Scale of 5 and diffuse multi-compartment hemorrhage on CT head consistent with severe traumatic brain injury. ICPs >30 cm H2O (corresponds to ~22.1 mm Hg) were noted on external ventricular drain insertion. The ONSD was 0.70 cm (upper limit normal 0.50 cm). At the time of ONSD measurement, the ICP was 23 mm Hg. There was also a poor ICP waveform with a prominent P2 wave consistent with decreased intracranial compliance. An axial image of the globe is shown with the lens anterior (top of the image) and the optic nerve posterior (bottom of the image).

Clinical Case 5: A 76-year-old woman with fibromuscular dysplasia had a routine carotid ultrasound that revealed severe (>70%) stenosis of the left ICA. The stenosis was manifested by elevated left mid-ICA flow velocities (PSV 267.5 cm/s, EDV 76.8 cm/s) and a poststenotic turbulent flow pattern in the distal ICA. The ICA to CCA ratio was 4.4. Heterogeneous plaque was seen in the same location. She was referred for and underwent successful carotid revascularization.

Clinical Case 6: A 32-year-old woman was admitted with severe headache, nausea, and vomiting. She was found to have extensive cerebral VST involving the superior sagittal and transverse venous sinuses on CTV. TCDs were performed. Insonation through the posterior temporal window demonstrated an arterial waveform from the right P1 segment of the PCA (early in the tracing and above baseline; the PCA [especially the P2 segment of the PCA] serves as a useful landmark for the deep venous system since they both tend to be adjacent to each other), followed by a venous monophasic waveform (the basal vein of Rosenthal, seen below baseline) that represents flow away from the probe. The tracing reveals elevated venous velocities (~40 cm/s). The patient was immediately started on a heparin drip, her symptoms resolved, and she was later transferred to a floor bed in stable condition.

Clinical Case 7: A 78-year-old woman presented with sudden onset headache. A non-contrast head CT revealed right frontoparietal ICH. Her neurologic exam was concerning for elevated ICP and impending uncal herniation (ipsilateral “blown pupil”) but invasive monitoring was not possible. (a) B-mode ultrasound shows left ONSD measured 3 mm behind the optic disc. The lens is visualized in the same axis. Prior to IV mannitol administration, ONSD was 0.69 cm (not shown). Thirty minutes after mannitol it was 0.63 cm. (b) Calculation of MLS using Eq. 25.4 (see text). Ultrasound image via the left temporal window shows a “double reflex” (i.e., third ventricle) measuring 6.14 cm from the contralateral (left) temporal window (distance B); note the hypoechoic thalami surrounding the third ventricle. The third ventricle from the ipsilateral temporal window measured 8.54 cm (or distance A, image not shown). Using Eq. 25.4, MLS is 1.15 cm, which correlated closely to the MLS determined from CT head (see [d]). (c) The pineal gland, another midline marker, is demonstrated as a hyperechoic structure dorsal to the thalami/3rd ventricle and measures 8.49 cm from the ipsilateral temporal window. Of note this is quite similar to the position of 3rd ventricle measured ipsilaterally which was at 8.54 cm (not shown). (d) A CT head obtained within 12 hours of the ultrasound in this patient shows MLS of 1.2 cm at the septum, similar to the estimated MLS using ultrasound (see [b]).

Clinical Case 8: Right internal jugular vein (IJ) central venous catheter placement in short axis view. Following the needle point is key to correct placement. The needle shaft can masquerade as the needle point such as in this case. Tenting of the anterior wall of the vein is another clue to the actual position of the needle point.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sheriff, F.G., Sheriff, S., Rao, S.S., Chung, D.Y. (2020). Neurocritical Care Ultrasound. In: Nelson, S., Nyquist, P. (eds) Neurointensive Care Unit. Current Clinical Neurology. Humana, Cham. https://doi.org/10.1007/978-3-030-36548-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36548-6_25

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-36547-9

  • Online ISBN: 978-3-030-36548-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics