Skip to main content

Multimodality Neuromonitoring

  • Chapter
  • First Online:
Neurointensive Care Unit

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

In this chapter, we describe the ongoing development of innovative neuromonitoring devices that could improve current patient management in neurocritical care. We emphasize those devices that monitor brain oxygen delivery, brain metabolism, cerebral blood flow, intracranial pressure, electrophysiology, and cerebral autoregulation and discuss how to integrate and time-stamp them in a manner that facilitates interpretation of data from multimodality neuromonitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hansen AJ. Effect of anoxia on ion distribution in the brain. Physiol Rev. 1985;65:101–48.

    Article  CAS  Google Scholar 

  2. Choi DW. Cerebral hypoxia: some new approaches and unanswered questions. J Neurosci: Off J Soc Neurosci. 1990;10:2493–501.

    Article  CAS  Google Scholar 

  3. Oddo M, Bosel J. Monitoring of brain and systemic oxygenation in neurocritical care patients. Neurocrit Care. 2014;21(Suppl 2):S103–20.

    Article  Google Scholar 

  4. https://www.enterprise.cam.ac.uk/opportunities/icm-software-for-brain-monitoring-in-neurological-intensive-care-research/. University of Cambridge Enterprise, 2016.

  5. Highton D, Ghosh A, Tachtsidis I, Panovska-Griffiths J, Elwell CE, Smith M. Monitoring cerebral autoregulation after brain injury: multimodal assessment of cerebral slow-wave oscillations using near-infrared spectroscopy. Anesth Analg. 2015;121:198–205.

    Article  Google Scholar 

  6. Le Roux P, Menon DK, Citerio G, et al. The international multidisciplinary consensus conference on multimodality monitoring in neurocritical care: a list of recommendations and additional conclusions: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care. 2014;21(Suppl 2):S282–96.

    Article  Google Scholar 

  7. Banaji M, Mallet A, Elwell CE, Nicholls P. Cooper CE. A model of brain circulation and metabolism: NIRS signal changes during physiological challenges. PLoS Comput Biol. 2008;4:e1000212.

    Article  Google Scholar 

  8. Watzman HM, Kurth CD, Montenegro LM, Rome J, Steven JM, Nicolson SC. Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology. 2000;93:947–53.

    Article  CAS  Google Scholar 

  9. Suzuki S, Takasaki S, Ozaki T, Kobayashi Y. Tissue oxygenation monitor using NIR spatially resolved spectroscopy. BiOS ‘99 International Biomedical Optics Symposium. 1999; SPIE. p. 11.

    Google Scholar 

  10. Taussky P, O’Neal B, Daugherty WP, et al. Validation of frontal near-infrared spectroscopy as noninvasive bedside monitoring for regional cerebral blood flow in brain-injured patients. Neurosurg Focus. 2012;32:E2.

    Article  Google Scholar 

  11. Yoshitani K, Kawaguchi M, Miura N, et al. Effects of hemoglobin concentration, skull thickness, and the area of the cerebrospinal fluid layer on near-infrared spectroscopy measurements. Anesthesiology. 2007;106:458–62.

    Article  Google Scholar 

  12. Bhatia R, Hampton T, Malde S, et al. The application of near-infrared oximetry to cerebral monitoring during aneurysm embolization: a comparison with intraprocedural angiography. J Neurosurg Anesthesiol. 2007;19:97–104.

    Article  Google Scholar 

  13. Davie SN, Grocott HP. Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies. Anesthesiology. 2012;116:834–40.

    Article  CAS  Google Scholar 

  14. Tisdall MM, Tachtsidis I, Leung TS, Elwell CE, Smith M. Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin. Adv Exp Med Biol. 2008;614:217–25.

    Article  CAS  Google Scholar 

  15. Naidech AM, Bendok BR, Ault ML, Bleck TP. Monitoring with the Somanetics INVOS 5100C after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2008;9:326–31.

    Article  Google Scholar 

  16. Rivera-Lara L, Geocadin G, Zorrilla-Vaca A, et al. Validation of near-infrared spectroscopy for monitoring cerebral autoregulation in comatose patients. Neurocrit Care. 2017;27(3):362–9.

    Article  CAS  Google Scholar 

  17. Xing CY, Tarumi T, Liu J, et al. Distribution of cardiac output to the brain across the adult lifespan. J Cereb Blood Flow Metab. 2017;37:2848–56.

    Article  Google Scholar 

  18. Miller C, Armonda R. Monitoring of cerebral blood flow and ischemia in the critically ill. Neurocrit Care. 2014;21(Suppl 2):S121–8.

    Article  Google Scholar 

  19. Suarez JI, Qureshi AI, Yahia AB, et al. Symptomatic vasospasm diagnosis after subarachnoid hemorrhage: evaluation of transcranial Doppler ultrasound and cerebral angiography as related to compromised vascular distribution. Crit Care Med. 2002;30:1348–55.

    Article  Google Scholar 

  20. Vora YY, Suarez-Almazor M, Steinke DE, Martin ML, Findlay JM. Role of transcranial Doppler monitoring in the diagnosis of cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery. 1999;44:1237–47; discussion 47–8.

    CAS  PubMed  Google Scholar 

  21. Schytz HW, Guo S, Jensen LT, et al. A new technology for detecting cerebral blood flow: a comparative study of ultrasound tagged NIRS and 133Xe-SPECT. Neurocrit Care. 2012;17:139–45.

    Article  Google Scholar 

  22. Vajkoczy P, Roth H, Horn P, et al. Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg. 2000;93:265–74.

    Article  CAS  Google Scholar 

  23. Bouzat P, Oddo M. Lactate and the injured brain: friend or foe? Curr Opin Crit Care. 2014;20:133–40.

    Article  Google Scholar 

  24. Timofeev I, Carpenter KL, Nortje J, et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain: J Neurol. 2011;134:484–94.

    Article  Google Scholar 

  25. Monro A. Observations on the structure and function of the nervous system. Edinburgh: Creech and Johnson; 1783.

    Google Scholar 

  26. Kellie G. An account of the appearances observed in the dissection of two of the three individuals presumed to have perished in the storm of the 3rd, and whose bodies were discovered in the vicinity of Leith on the morning of the 4th November 1821 with some reflections on the pathology of the brain. Transac Medico Chirurg Soc Edinburgh. 1824;1:84–169.

    Google Scholar 

  27. Wilson MH. Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab. 2016;36:1338–50.

    Article  Google Scholar 

  28. Cadena R, Shoykhet M, Ratcliff JJ. Emergency neurological life support: intracranial hypertension and herniation. Neurocrit Care. 2017;27:82–8.

    Article  Google Scholar 

  29. Chesnut RM, Temkin N, Carney N, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367:2471–81.

    Article  CAS  Google Scholar 

  30. Tavakoli S, Peitz G, Ares W, Hafeez S, Grandhi R. Complications of invasive intracranial pressure monitoring devices in neurocritical care. Neurosurg Focus. 2017;43:E6.

    Article  Google Scholar 

  31. Lozier AP, Sciacca RR, Romagnoli MF, Connolly ES Jr. Ventriculostomy-related infections: a critical review of the literature. Neurosurgery. 2008;62(Suppl 2):688–700.

    PubMed  Google Scholar 

  32. Rivera-Lara L, Zorrilla-Vaca A, Geocadin RG, Healy RJ, Ziai W, Mirski MA. Cerebral autoregulation-oriented therapy at the bedside: a comprehensive review. Anesthesiology. 2017;126:1187–99.

    Article  Google Scholar 

  33. Rivera-Lara L, Zorrilla-Vaca A, Geocadin R, et al. Predictors of outcome with cerebral autoregulation monitoring: a systematic review and meta-analysis. Crit Care Med. 2017;45:695–704.

    Article  Google Scholar 

  34. Rots ML, van Putten MJ, Hoedemaekers CW, Horn J. Continuous EEG monitoring for early detection of delayed cerebral ischemia in subarachnoid hemorrhage: a pilot study. Neurocrit Care. 2016;24:207–16.

    Article  CAS  Google Scholar 

  35. Rivera-Lara L, Zorrilla-Vaca A, Healy RJ, et al. Determining the upper and lower limits of cerebral autoregulation with cerebral oximetry autoregulation curves: a case series. Crit Care Med. 2018;46:e473–e7.

    Article  Google Scholar 

  36. Czosnyka M, Smielewski P, Czosnyka Z, et al. Continuous assessment of cerebral autoregulation: clinical and laboratory experience. Acta Neurochir Suppl. 2003;86:581–5.

    CAS  PubMed  Google Scholar 

  37. Aries MJ, Czosnyka M, Budohoski KP, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia A. Rivera Lara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lara, L.A.R., Suarez, J.I. (2020). Multimodality Neuromonitoring. In: Nelson, S., Nyquist, P. (eds) Neurointensive Care Unit. Current Clinical Neurology. Humana, Cham. https://doi.org/10.1007/978-3-030-36548-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36548-6_22

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-36547-9

  • Online ISBN: 978-3-030-36548-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics